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ABSTRACT
The recently wide adoption of data science approaches to decision
making in several application domains (such as health, business
and even education) open new challenges in engineering and im-
plementation of this systems. Considering the big picture of data
science, Machine learning is the wider used technique and due to
its characteristics, we believe that a better engineering methodol-
ogy and tools are needed to realize innovative data-driven systems
able to satisfy the emerging quality attributes (such as, debias and
fariness, explainability, privacy and ethics, sustainability). This re-
search project will explore the following three pillars: i) identify
key quality attributes, formalize them in the context of data science
pipelines and study their relationships; ii) define a new software
engineering approach for data-science systems development that
assures compliance with quality requirements; iii) implement tools
that guide IT professionals and researchers in the realization of
ML-based data science pipelines since the requirement engineering.
Moreover, in this paper we also presents some details of the project
showing how the feature models and model-driven engineering
can be leveraged to realize our project.

CCS CONCEPTS
• Software and its engineering→ Extra-functional properties;
Designing software; • Computing methodologies → Machine
learning.
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1 INTRODUCTION
Data Science (DS), and in particular Machine Learning (ML), sys-
tems are increasingly becoming a used instrument, applied to all
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application domains and affecting our real life. Such systems can be
defined as a set of one or more pipelines (or workflows), which take
as input raw (unprocessed) data and returns actionable answers to
questions in the form of machine learning models. In this paper,
we focus on DS pipelines that leverage on ML, that we call ML
pipelines.
Problem definition. A generic ML pipeline is depicted in Figure
1 [1, 18], where rounded blue boxes represent phases and yellow
squared boxes represent quality attributes that influence the quality
of the final system. The quality attributes are reported in correspon-
dence of the tasks that affect them. As an example, if the system
requires high fairness (e.g. for legal reasons [4, 7, 14]), then debias-
ing component must be included during the extraction and cleaning
or the analysis phase in order to achieve fairness [16]. Some quality
attributes can affect other qualities, for example, fairness usually
has a negative influence on the predictions’ performance [8, 12]. So,
if the system is required to have also a high prediction performance,
other solutions must be considered during this step. Hence, the
identification and formalization of quality attributes and require-
ments, and their handling in the development of ML pipelines are
complex tasks, also given the complex influence among them.
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Figure 1: Data Science workflow with involved quality at-
tributes

Expected contribution. In this research project, we aim to for-
malize a common definition of quality in ML pipelines taking into
account the influence among different quality attributes. Moreover,
leveraging on such definition we aim to realize a model-driven
framework that automatically generates ML pipelines compliant
with quality requirements. In particular, the expected contribution
is given by answering the following research questions:

RQ 1) How can we formalize quality attributes and re-
quirements of the whole ML pipeline?
RQ 2) How can we formalize how quality attributes influ-
ence each other?
RQ3)How can data scientists specify quality requirements
with a user-friendly formalism?
RQ 4)How can we automatically generate the ML pipeline
assuring the functional and quality requirements?
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Figure 2: High-level architecture of the proposed framework

2 RELATEDWORK
The quality assurance (QA) problem in ML pipelines has acquired
much relevance in the last years. Many articles highlight the need-
ing to define and formalize new standard quality requirements
for such systems [5, 6, 9, 20]. Several solutions have been pro-
posed to formalize and identify standard quality requirements in
ML pipelines. Concerning the standardization of workflows and
quality requirements, Studer et al. proposed the CRISP_ML process
model to develop quality machine learning systems [18]. Instead,
the Q4AI consortium proposed a set of guidelines for the quality
assurance of ML systems for specific domains [10]. Concerning the
modelling of quality requirements, Azimi et al. proposed a layered
model for the QA of Machine Learning systems in the context of
IoT [3], instead Ishikawa proposed a framework for the quality
evaluation of an ML system using an argumentation approach [11].
Finally, Siebert et al. presented a meta-model for the formal defi-
nition of quality requirements in ML pipelines [17]. To the best of
our knowledge, this is the first attempt at formalizing the quality
requirements of ML pipelines using a model-driven approach.

From this analysis of related work, we can conclude that there is a
robust research motivation in formalizing and defining new quality
requirements for ML systems. Many attempts have been proposed
to solve these issues, and several definitions of quality requirements,
metrics and components are now available from the literature [17,
18, 20]. However, these issues are still not fully addressed: i) a
general and formal definition of quality in ML pipelines is still
missing ii) the analyzed papers do not cover the entire development
process of ML pipelines starting from requirement specification to
system implementation and quality assurance iii) a formalization
of the influence among quality attributes is still missing. With this
research project, we aim to overcome these issues.

3 PROPOSED APPROACH
The proposed approach aims to define an innovative model-driven
framework that guides data scientists in the development of ML
pipelines assuring quality requirements. Figure 2 depicts the high-
level architecture of such a framework. As discussed earlier (see
Figure 1), ML pipelines are made of common phases [1, 18] that
embed a set of standard components identified by the system’s func-
tional requirements (like the ML model suited for a ML goal such as
classification), and a set of variability points that represents different
methods to implement the functional requirements and to satisfy

quality constraints. For example, if we consider classification prob-
lem and explainability quality, variability points are represented by
models as Support Vector Machines combined with explainability
methods like Local Interpretable Model-Agnostic Explanations (LIME)
[15], or Decision Trees. While Support Vector Machines needs to
be combined with a specific explainability method, Decision Tree
must not because it has an intrinsic explainability that guarantees
the quality requirement.

Product-Line Architectures, specified by Feature Models, [13, 19]
represent a suitable model to formalize ML pipelines with variabil-
ity. But, they miss adequate means to specify quality attributes and
requirements. In fact, they do not allow to specify thresholds and
metrics. To address this issue, in our approach (see Figure 2), we
propose to extend the feature models meta-model to enable: i) the
creation, by the machine learning expert, of an enriched feature
model with associated quality attributes (as done in [2]) ii) the speci-
fication of functional and quality requirements by the data scientist.
In particular, during the Requirement Engineering, the data scientist
specifies a set of functional and quality requirements compliant
to the defined meta-model. These requirements are used during
Architecture Definition to automatically generate, from the extended
feature model provided by the machine learning expert, a set of
ML pipeline configurations able to satisfy the defined functional
requirements (the Configuration boxes in the figure). The config-
urations are defined by removing from the feature model all the
components (and their relative specification) not suitable to meet
the specified requirements.

The generated configurations are given as input to the Imple-
mentation Quality Assurance step that aims to : i) generate for each
configuration a python script implementing the ML Pipeline, and
ii) verify that at least one generated pipeline satisfies the quality
requirements (namely, Quality ML Pipeline).

The framework returns the set of QualityML Pipelines, satisfying
quality constraints, if any, ordemands the data scientist to relax
quality requirements and repeat the process.

4 EVALUATION PLAN
The research project is in its infancy and we plan to answer RQ 1
and RQ 2 during the end of the first year of the PhD. In particu-
lar, we plan to better study the quality attributes of ML-based DA
systems and their influences and to define how to embed quality
requirements and characteristics in a product line architecture. We
plan to present these results to the community through an extended
version of feature meta-model. The second and third year will be
focused on answering RQ 3 and RQ 4 with the implementation
of a model-driven framework for the automatic implementation of
ML pipelines assuring quality requirements. In order to ease the
requirement specification task, we also plan to define a Domain Spe-
cific Language. We aim to test the final application by creating ML
systems following quality requirements like fairness, explainability,
privacy of sensitive information. In order to prove the generality of
the approach and test different quality attributes, we will consider
use cases from several application domains.
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