
Democratizing Quality-Based Machine Learning
Development through Extended Feature Models

⋆

Giordano d’Aloisio[0000−0001−7388−890X], Antinisca Di
Marco[0000−0001−7214−9945], and Giovanni Stilo[0000−0002−2092−0213]

University of L’Aquila, Italy
giordano.daloisio@graduate.univaq.it

{antinisca.dimarco,giovanni.stilo}@univaq.it

Abstract. ML systems have become an essential tool for experts of
many domains, data scientists and researchers, allowing them to find an-
swers to many complex business questions starting from raw datasets.
Nevertheless, the development of ML systems able to satisfy the stake-
holders’ needs requires an appropriate amount of knowledge about the
ML domain. Over the years, several solutions have been proposed to
automate the development of ML systems. However, an approach tak-
ing into account the new quality concerns needed by ML systems (like
fairness, interpretability, privacy, and others) is still missing.
In this paper, we propose a new engineering approach for the quality-
based development of ML systems by realizing a workflow formalized as
a Software Product Line through Extended Feature Models to generate
an ML System satisfying the required quality constraints. The proposed
approach leverages an experimental environment that applies all the set-
tings to enhance a given Quality Attribute, and selects the best one. The
experimental environment is general and can be used for future quality
methods’ evaluations. Finally, we demonstrate the usefulness of our ap-
proach in the context of multi-class classification problem and fairness
quality attribute.

Keywords: Machine Learning System · Software Quality · Feature Mod-
els · Software Product Line · Low-code development

1 Introduction

Machine Learning (ML) systems are increasingly becoming used instruments,
applied to all application domains and affecting our real life. The development

⋆ This work has been partially supported by EMELIOT national research project,
which has been funded by the MUR under the PRIN 2020 program (Con-
tract 2020W3A5FY) and by European Union – Horizon 2020 Program under the
scheme “INFRAIA-01-2018-2019 – Integrating Activities for Advanced Communi-
ties”, Grant Agreement n.871042, “SoBigData++: European Integrated Infrastruc-
ture for Social Mining and Big Data Analytics” (http://www.sobigdata.eu)

2 G. d’Aloisio et al.

of ML systems usually requires a good knowledge of the underlying ML ap-
proaches to choose the best techniques and models to solve the targeted prob-
lem. Many methods have been developed in the last years to automate some
ML systems development phases and help non-technical users [61,31,34]. How-
ever, these techniques do not consider the quality properties essential for ML
systems, such as dataset’s Privacy, model’s Interpretability, Explainability, and
Fairness [50,46,12]. Indeed, if we consider the impact that ML applications have
in our lives, it is clear how assuring that these quality properties are satisfied
is of paramount importance (look for instance at some of the 17 sustainable
development goals proposed by the United Nations [51]).

In this paper, we present MANILA (Model bAsed developmeNt of machIne
Learning systems with quAlity), a novel approach which will democratize the
quality-based development of ML systems by means of a low-code platform [62].
The goal of our approach is to provide an environment for the automatic con-
figuration of experiments that automatically selects the ML System (i.e., ML
Algorithm and quality enhancing method) better satisfying a given quality re-
quirement. The requirement is satisfied by finding the best trade-off among the
involved quality attributes. This will simplify the work of the data scientist and
will make the quality-based development of ML systems also accessible to non-
technical users (in other words, democratize).

Hence, the main contributions of this paper are the following:

– The identification of key quality attributes in ML systems by selecting the
more adopted ones in the literature;

– The specification and realization of a general workflow for the quality-based
development of ML systems. This workflow is derived from our experience
in the quality-based development of ML systems. It leverages an experimen-
tal environment that evaluates all the methods to enhance a given quality
attribute, and selects the one performing better. Such workflow can be mod-
elled as a Software Product Line (SPL);

– The specification of an Extended Feature Models (ExtFM) [38,9] that imple-
ments the SPL, where the variation points are identified by all the compo-
nents needed to generate a quality experiment. The ExtFM guides the data
scientist through a low-code workflow configuration;

– The generation, from the workflow configuration, of an actual Python im-
plementation of the experiment to find the ML System that better satisfies a
given quality constraint. The generated experimental environment is general
and can be used in the future to evaluate other methods to enhance a given
quality property.

This paper is organized as follows: in section 2 we discuss related works
related to quality engineering of ML systems.In section 3, we present the selected
quality attributes and discuss how they affect ML systems. Section 4 is devoted
to presenting a general workflow to choose the ML system achieving the best-
given quality attributes. This general workflow has been the motivating scenario
for MANILA. In section 5, we present MANILA by describing in detail the
implemented ExtFM and explaining each step of the quality-based development

Extended Feature Models for Quality-Based ML Development 3

of ML systems. Section 6 is dedicated to a proof of concept of the developed
modelling framework by reproducing a case study. Section 7 describes some
threats to validity, and finally, section 8 presents some discussions, describes
future work, and wraps up the paper.

2 Related Work

The problem of quality assurance in machine learning systems has gained much
relevance in the last years. Many articles highlight the needing of defining and
formalizing new standard quality attributes for machine learning systems [30,65,70]
[50,12,46]. Most of the works in the literature focus either on the identification
of the most relevant quality attributes for ML systems or on the formalization
of them in the context of ML systems development.

Concerning the identification of quality attributes in ML systems, the au-
thors of [40,72] identify three main components in which quality attributes can
be found: Training Data, ML Models and ML Platforms. The quality of
Training Data is usually evaluated with properties such as privacy, bias, num-
ber of missing values, expressiveness. For ML Model, the authors mean the
trained model used by the system. The quality of this component is usually
evaluated by fairness, explainability, interpretability, security. Finally, the ML
Platform is the implementation of the system, which is affected mostly by se-
curity and performance reliability and availability. Muccini et al. identify in [50]
a set of quality properties as stakeholders’ constraints and highlight the need-
ing of considering them during the Architecture Definition phase. The quality
attributes are: data quality, ethics, privacy, fairness, ML models’ performance,
etc. Martinez-Fernàndez et al. also highlight in [46] the needing of formalizing
quality properties in ML systems and to update the software quality require-
ments defined by ISO 25000 [36]. The most relevant properties highlighted by
the authors concern: ML safety, ML ethics, and ML explainability. In our work,
we focus on quality properties that arises during the development of ML systems
such as, fairness, explainability, interpretability, and dataset’s privacy, while we
leave other quality properties (e.g., performance) that arises during other phases
(e.g., deployment) for future works.

Many solutions have been proposed to formalize and model standard quality
assurance process in ML systems. Amershi et al., have been the first authors
to identify a set of common steps that identify each ML system development
[5]. In particular, each ML system is identified by nine stages that go from data
collection and cleaning, to model training and evaluation, and finally to the de-
ployment and monitoring of the ML model. Their work has been the foundation
of many subsequent papers on quality modelling of ML systems. CRISP ML
(Cross-Industry Standard Process model for Machine Learning) is a process
model proposed by Studer et al. [66], extending the more known CRISP DL
[45] process model to ML systems. They identify a set of common phases for
the building of ML systems namely: Business and Data understanding, Data
preparation, Modeling, Evaluation, Deployment, Monitoring and Maintenance.

4 G. d’Aloisio et al.

For each phase, the authors identify a set of functional quality properties to
guarantee the quality of such systems. Similarly, the Quality for Artificial In-
teligence (Q4AI) consortium proposed a set of guidelines [32] for the quality
assurance of ML systems for specific domains: generative systems, operational
data in process systems, voice user interface system, autonomous driving and
AI OCR. For each domain, the authors identify a set of properties and met-
rics to ensure quality. Concerning the modelling of quality requirements, Azimi
et al. proposed a layered model for the quality assurance of machine learning
systems in the context of Internet of Things (IoT) [7]. The model is made of
two layers: Source Data and ML Function/Model. For the Source Data, a set of
quality attributes are defined: completeness, consistency, conformity, accuracy,
integrity, timeliness. Machine learning models are instead classified into predic-
tors, estimators and adapters and a set of quality attributes are defined for each
of them: accuracy, correctness, completeness, effectiveness, optimality. Each sys-
tem is then influenced by a subset of quality characteristics based on the type
of ML model and the required data. Ishikawa proposed, instead, a framework
for the quality evaluation of an ML system [35]. The framework defines these
components for ML applications: dataset, algorithm, ML component and system,
and, for each of them, proposed an argumentation approach to assess quality.
Finally, Siebert et al. [64] proposed a formal modelling definition for quality re-
quirements in ML systems. They start from the process definition in [45] and
build a meta-model for the description of quality requirements. The meta-model
is made of the following classes: Entity (which can be defined at various levels
of abstraction, such as the whole system or a specific component of the system),
Property (also expressed at different levels of abstraction), Evaluation and Mea-
sure related to the property. Starting from this meta-model, the authors build
a tree model to evaluate the quality of the different components of the system.
From this analysis, we can conclude that there is a robust research motivation in
formalizing and defining new quality attributes for ML systems. Many attempts
have been proposed to solve these issues, and several quality properties, metrics
and definitions of ML systems can now be extracted from the literature. However
a framework that actually guides the data scientist through the development of
a ML systems satisfying quality properties is still missing.In this paper, we aim
to solve these concerns by proposing MANILA, a novel approach which will de-
mocratize the quality-based development of ML systems by means of a low-code
platform. In particular, we model a general workflow for the quality-based de-
velopment of ML systems as a SPL through the ExtFM formalism. Next, we
demonstrate how it is possible to generate an actual implementation of such
workflow from a low-code experiment configuration and how this workflow is
actually able to find the best methods to satisfy a given quality requirement.
Recalling the ML development process of [5], MANILA focuses on the model
training and model evaluation development steps by guiding the data scientist
in selecting the ML system (i.e., ML algorithm and quality-enhancing method)
better satisfying a given quality attribute.

Extended Feature Models for Quality-Based ML Development 5

Concerning the adoption of Feature Models to model ML systems, a similar
approach has been used by Di Sipio et al. in [24]. In their work, the authors use
Feature Models to model ML pipelines for Recommender Systems. The variation
points are identified by all the components needed to implement a recommender
system (e.g., the ML algorithm to use or the python libraries for the implemen-
tation). However, they do not consider quality attributes in their approach.

Finally, concerning assessing quality attributes in ML systems, there is an
intense research activity primarily related to the fairness-testing domain [20].
In general, the problem of fairness assurance can be defined as a search-based
problem among different ML algorithms and fairness methods [20]. Many tools
have been proposed for the automatic fairness test, such as [18,63,69] to cite
a few. However, these tools tend to require programming skills and thus are
unfriendly to nontechnical stakeholders [20]. In our work, we aim to fill this
gap by proposing a low-code framework that, generating and executing suitable
experiments, supports (also not expert) users in the quality-based development
of ML systems, by returning the trained ML model with best quality.

3 Considered Quality Attributes

In software engineering, a quality requirement specifies criteria that can be used
to quantify or qualify the operation of a system rather than to specify its be-
haviours [19]. To analyse an ML system from a qualitative perspective, we must
determine the Quality Attributes (QA) that we can use to judge the system’s
operation, influencing the ML designers’ decisions. We refer to the literature for
ML systems to identify the QA to consider [46,50,30,40,70]. In this work, we con-
sider a sub-set of the identified QA, i.e., Effectiveness, Fairness, Interpretability,
Explainability, and Privacy.

Effectiveness. This QA is used to define how good the model must be in
predicting outcomes [13]. There are different metrics in the literature to address
the Effectiveness of an ML model. Among the most common metrics, we cite
Precision: fraction of true positives (TP) to the total positive predictions [14];
Recall : fraction of TP to the total positive items in the dataset [14]; F1 Score:
harmonic mean of Precision and Recall [67]; Accuracy : fraction of True Pos-
itives (TP) and True Negatives (TN) above the total of predictions [60]. This
attribute can be considered crucial in developing an ML system and must always
be accounted in the quality evaluation of ML systems [72,13].

Fairness.AMLmodel can be defined fair if it has no prejudice or favouritism
towards an individual or a group based on their inherent or acquired character-
istics identified by the so-called sensitive variables [47]. Sensitive variables are
variables of the dataset that can cause prejudice or favouritism towards individ-
uals having a particular value of that variable (e.g., sex is a very common sensi-
tive variable, and women can be identified as the unprivileged group [47,16,42]).
Several metrics can assess the discrimination of an ML system towards sen-
sitive groups (group fairness metrics) or single individuals (individual-fairness
metrics) [47,16].

6 G. d’Aloisio et al.

Interpretability. Interpretability can be defined as the ability of a system to
enable user-driven explanations of how a model reaches the produced conclusion
[15]. Interpretability is one QA that can be estimated without executing an ac-
tual ML system. Indeed, ML methods are classified as whitebox, i.e., interpretable
(e.g., Decision Trees or linear models), and black-box, i.e., not interpretable (e.g.,
Neural Networks) [49]. Interpretability is a very strong property that can hold
only for white-box approaches (such as decision trees). Instead, black-box meth-
ods (such as neural networks) require the addition of explainability-enhancing
methods to have their results interpretable [43].

Explainability. Explainability can be defined as the ability to make black-
box methods’ results (which are not interpretable) interpretable [43]. Enhancing
the Interpretability of black-box methods has become crucial to guarantee the
trustworthiness of ML systems, and several methods have been implemented for
this purpose [43]. The quality of explanations can be measured with several met-
rics that can be categorised as application-grounded metrics, which involve an
evaluation of the explanations with end-users, human-grounded metrics, which
include evaluations of explanations with non-domain-experts, and functionally-
grounded metrics, which use proxies based on a formal definition of interpretabil-
ity [73].

Privacy. Privacy can be defined as the susceptibility of data or datasets
to revealing private information [21]. Several metrics can assess the ability to
link personal data to an individual, the level of detail or correctness of sensitive
information, background information needed to determine private information,
etc [71].

4 Motivating Scenario

Today, a data scientist, required to realize an ML system satisfying a given
quality constraint, has no automatic support in the development process. Indeed,
she follows and manually executes a general experiment workflow aiming at
evaluating a set of ML systems obtained by assembling quality assessment and
improvement algorithms with the ones solving the specific ML tasks. By running
the defined experiment, she aims to find the optimal solution satisfying a given
QA constraint.

Algorithm 1 reports the pseudo-code of a generic experiment to assess a
generic QA during the development of an ML system. This code has been derived
from our previous experience in the quality-based development of ML Systems
and by asking researchers studying ML development and quality assessment how
they evaluate such properties during ML systems development.

The first step in the experiment workflow is selecting the dataset to use (in
this work, we assume that the dataset has already been preprocessed and is ready
to train the ML model). Next, the data scientist selects the ML algorithms, the
methods enhancing a QA, and the appropriate quality metrics for the evaluation.
Then, for each of the chosen ML algorithms, she applies the selected quality
methods accordingly to their type, there can be the following options:

Extended Feature Models for Quality-Based ML Development 7

Algorithm 1: Quality-evaluation experiment pseudo-code

1 select dataset d;
2 select set of ML Algorithms;
3 select set of QA Methods and Metrics;
4 for m ∈ ML Algorithms do
5 for q ∈ QA Methods do
6 if q works on d then
7 apply q on d;

8 if q works on m before training then
9 apply q on m;

10 f = train m;
11 if q works on f then
12 apply q on f ;

13 compute selected metrics on f ;

14 choose report technique;
15 evaluate the results;
16 Q = best QA Method;
17 M = best ML Algorithm;
18 F = train M with full dataset applying Q;
19 return F

– if the quality method works on the training set, it has to be applied to the
dataset before training the ML algorithm;

– if the quality method works on the ML algorithm before training, then it
has to be applied to the ML algorithm before the training phase;

– if the method works on the trained ML algorithm (i.e., f in the code), then
it has to be applied after the training of the ML algorithm.

Finally, the data scientist computes the selected metrics for the specific pair of
ML and QA methods. After repeating the process for all the selected methods,
she chooses a report technique (e.g., table or chart), evaluates the obtained
results collected in the report and trains with the entire dataset the ML algorithm
performing better by applying the quality method that better achieves the QA.
If the data scientist has a threshold to achieve, then she can verify if at least
one of the ML and quality methods combinations satisfies the constraint. If so,
one of the suitable pair is selected. Otherwise, she has to relax the threshold and
repeat the process again.

The workflow described in Algorithm 1 can be generalized as a process of
common steps describing any experiment in the considered domain. Figure 1
sketches such a generalization. First, the data scientist selects all the features
of the experiment, i.e., the dataset, the ML Methods, the methods assuring a
specific QA and the related metrics. we call such a step Features Selection. Next,
she runs the quality methods using the general approach described in algorithm
1 and evaluates the results (namely, Experiment Execution). If the results are

8 G. d’Aloisio et al.

Data
Scientist

Features selection

Select
dataset

Select
ML Methods

Select
QA Methods

Select
Metrics

Test the
methods

Evaluate the
results Yes

No

Results
are satisfying?

Train and
return the

method with
best QA

Experiment Execution

Fig. 1: Manual execution of the quality experiment workflow

satisfying (i.e., they satisfy the quality constraints), then the method with the
best QA is returned. Otherwise, the data scientist have to repeat the process.

The described workflow is the foundation of MANILA that aims to formalise
and democratise it by providing a SPL and ExtFM-based low-code framework
that supports her in development of quality ML systems.

5 MANILA Approach

In this section, we describe MANILA, a framework to formalise and democra-
tise the quality-based development of ML systems. This work is based on the
quality properties and the experiment workflow described in sections 3 and 4,
respectively.

Our approach aims to automate and ease the quality-based development
of ML systems. We achieve this goal by proposing a framework to automati-
cally generate a configuration of an experiment to find the ML system (i.e., ML
algorithm and quality enhancing method) better satisfying a given QA. This
framework will accelerate the quality-based development of ML systems making
it accessible also to not experts.

Recalling the experimental workflow described in section 4, the set of ML
models, quality methods and metrics can be considered variation points of each
experiment, differentiating them from one another. For this reason, we can think
of this family of experiments as a Software Product Line (SPL) specified by a
Feature Model [6]. Indeed, Feature Models allow us to define a template for
families of software products with standard features (i.e., components of the
final system) and a set of variability points that differentiate the final systems
[38,29]. Features in the model follow a tree-like parent-child relationship and
could be mandatory or optional [29]. Sibling features can belong to an Or-
relationship or an Alternative-relationship [29]. Finally, there could be Cross-tree
relationships among features not in the same branch. These relationships are
expressed using logical propositions [29]. However, traditional Feature Models
do not allow associating attributes to features, which are necessary in our case
to represent a proper experiment workflow (for instance, to specify the label of

Extended Feature Models for Quality-Based ML Development 9

the dataset or the number of rounds in a cross-validation [58]). Hence, we relied
on the concept of Extended Feature Models [38,9] to represent the family of
experiments workflows.

MANILA

MANILA Extended Feature Model

Feature
selection

Experiment
generation

Experiment
execution

Quality Attribute 1

Best Quality
Method

Quality report

Quality Attribute 2

Quality report

Best Quality
Method

Quality
Trade-off

Extended Feature Model Meta-Model

Fig. 2: MANILA approach

Figure 2 details a high-level picture of MANILA, where each rounded box
represents a step in the quality-driven development process, while square boxes
represent artefacts. Dotted blocks represent steps which have not been imple-
mented yet and will be considered in future works.

The basis of MANILA is the Extended Feature Model (ExtFM), based on
the existing ExtFM Meta-Model. The ExtFM is the template of all possible
experiments a data scientist can perform and guides her through the quality-
based development of an ML system. The first step in the development process is
the features selection, in which the data scientist selects all the components of the
quality-testing experiment. Next, a Python script implementing the experiment
is automatically generated from the selected features. Finally, the experiment is
executed, and for each QA selected, it returns:

1. a quality report reporting for each quality method and ML algorithm the
related metrics;

2. the ML algorithm with the applied quality enhancing method that better
performs with the given QA, trained and ready for production.

In the future, MANILA will analyse the quality reports of each selected QA in
order to find the best trade-off among them (for instance, by means of Pareto-
front functions). The architecture of MANILA makes it easy to extend. In fact,
adding a new method or metric to MANILA just translates to adding a new
feature to the ExtFM and adding the proper code implementing it.

Near each step, we report the tools involved in its implementation. The source
code of the implemented artefacts is available on Zenodo [23], and GitHub [22].
In the following, we detail the ExtFM and each process step.

10 G. d’Aloisio et al.

5.1 Extended Feature Model

As already mentioned, the ExtFM is the basis of MANILA approach since it
defines the template of all possible experiments a data scientist can generate. It
has been implemented using FeatureIDE, an open-source graphical editor which
allows the definition of ExtFMs [68]. Figure 3 shows a short version of the im-

Fig. 3: Short version of the implemented Extended Feature Model

plemented ExtFM1. In particular, each experiment is defined by seven macro
features, which are then detailed by children’s features.

The first mandatory feature is the Dataset. The Dataset has a file exten-
sion (e.g., CSV, EXCEL, JSON, and others), and a Label which can be Binary
or Multi-Class. The Label feature has two attributes specifying his name and

1 The whole picture can be downloaded here https://anonymous.4open.science/r/
manila-101D/imgs/feature-model.png

https://anonymous.4open.science/r/manila-101D/imgs/feature-model.png
https://anonymous.4open.science/r/manila-101D/imgs/feature-model.png

Extended Feature Models for Quality-Based ML Development 11

the positive value (used to compute fairness metrics). The Dataset could also
have one or more sensitive variables that identify sensitive groups subject to
unfairness [47]. The sensitive variables have a set of attributes to specify their
name and the privileged and unprivileged groups [47]. Finally, there is a feature
to specify if the Dataset has only positive attributes. This feature has been in-
cluded to define a cross-tree constraint with a scaler technique that requires only
positive attributes (see table 1). All these features are modelled as abstract since
they do not have a concrete implementation in the final experiment. The next
feature is a Scaler algorithm, which is not mandatory and can be included in the
experiment to scale and normalize the data before training the ML model [54].
Different scaler algorithms from the scikit-learn library [55] are listed as concrete
children of this feature. Next, there is the macro-feature representing the ML
Task to perform. This feature has not been modelled as mandatory since there
are two fairness methods (i.e. Gerry Fair and Meta Fair [39,17]) that embed a
fair classification algorithm and so, if they are selected, the ML Task can not be
specified. However, we included a cross-tree constraint requiring the selection of
ML Task if any of these two methods are selected (¬ Gerry Fair ∧ ¬ Meta Fair
⇒ ML Task). An ML Task could be Supervised or Unsupervised. A Supervised
task could be a Classification task or a Regression task and has an attribute
to specify the size of the training set. These two abstract features are then de-
tailed by a set of concrete implementations of ML methods selected from the
scikit-learn library [55]. The Unsupervised learning task could be a Clustering
or an Aggregation task. At this stage of the work, these two features have not
been detailed and will be explored in future works. Next is the macro feature
representing the system’s Quality Attributes. This feature is detailed by the four
quality attributes described in section 3. Effectiveness is not included in these
features since it is an implicit quality of the ML methods and does not require
adding other components (i.e. algorithms) in the experiment. At the time of this
paper, the Fairness quality has been detailed, while the other properties will be
deepened in future works. In particular, Fairness methods can be Pre-Processing
(i.e. strategies that try to mitigate the bias on the dataset used to train the
ML model [47,37,27]), In-Processing (i.e. methods that modify the behaviour
of the ML model to improve fairness [47,3]), and Post-Processing (i.e. methods
that re-calibrate an already trained ML model to remove bias [47,56]). These
three features are detailed by several concrete features representing fairness-
enhancing methods. In selecting such algorithms, we selected methods with a
solid implementation, i.e., algorithms integrated into libraries such as AIF360
[8] or Fairlearn [11] or algorithms with a stable source code such as DEMV
[26] or Blackbox [56]. All these quality features have been implemented with an
Or-group relationship. Forward, the macro feature represents the Metrics to use
in the experiment. Metrics are divided among Classification Metrics, Regression
Metrics and Fairness Metrics. Each metric category has a set of concrete metrics
selected from the scikit-learn library [55] and the AIF360 library [8]. Based on
the ML Task and the Quality Attributes selected, the data scientist must select
the proper metrics to assess Correctness and the other Quality Attributes. This

12 G. d’Aloisio et al.

constraint is formalized by cross-tree relationships among features (see table 1).
In addition, a set of Aggregation Functions must be selected if more than one
metric is selected. The aggregation function combines the value of the other
metrics to give an overall view of the method’s behaviour. Forward, there is the
optional macro feature identifying the Validation function. Validation functions
are different strategies to evaluate the Quality Attributes of an ML model [57].
Several Validation functions are available as children features, and there is an
attribute to specify the number of groups in case of cross-validation [57]. The
last macro-feature is related to the presentation of the results. Recalling the
experiment workflow described in section 4, the results are the metrics’ values
derived from the execution of the experiment. The results can be presented in
a tabular way or using proper charts. Different chart types are available as con-
crete children features. Finally, table 1 lists the cross-tree constraints defined

Table 1: Extended Feature Model cross-tree constraints
Cross-tree constraints

Single Sensitive Var ⇒ ¬ Sampling ∧ ¬ Blackbox ∧ ¬ DIR

Fairness ⇒ Sensitive Variables

MultiClass ⇒ ¬ Reweighing ∧ ¬ DIR ∧ ¬ Optimized Preprocessing ∧ ¬ LFR
∧ ¬ Adversarial Debiasing ∧ ¬ Gerry Fair ∧ ¬ Meta Fair
∧ ¬ Prejudice Remover ∧ ¬ Calibrated EO ∧ ¬ Reject Option

Regression ⇒ ¬ PostProcessing ∧ ¬ Reweighing ∧ ¬ DIR ∧ ¬ DEMV
∧ ¬ Optimized Preprocessing ∧ ¬ LFR ∧ ¬ Adversarial Debiasing
∧ ¬ Gerry Fair ∧ ¬ Meta Fair ∧ ¬ Prejudice Remover

Exponentiated Gradient ∨ Grid Search ⇒ ¬ MLP Classifier ∧¬ MLP Regressor

¬ GerryFair ∧¬ MetaFair ⇒ ML Task

Classification ⇐⇒ Classification Metrics ∧¬ Regression Metrics

Classification Metrics ⇐⇒ ¬ Regression Metrics

Regression ⇐⇒ Regression Metrics ∧¬ Classification Metrics

Fairness ⇒ Fairness Metrics

Box Cox Method ⇒ Strictly Positive Attributes

in our model. These constraints are useful to guide the data scientist through
selecting proper fairness-enhancing methods or metrics based on the Dataset’s
characteristics (i.e., label type or the number of sensitive variables) or the ML
Task.

5.2 Features selection

From the depicted ExtFM, the data scientist can define her experiment by spec-
ifying the needed features inside a configuration file. A configuration file is an
XML file describing the set of selected features and the possible attribute val-
ues. The constraints among features defined in the ExtFM will guide the data

Extended Feature Models for Quality-Based ML Development 13

scientist in the selection by not allowing the selection of features that are in con-
trast with already selected ones. The editor used to implement the ExtFM [68]
provides a GUI for the specification of configuration files, making this process
accessible to non-technical users.

(a) Feature selection (b) Attribute specification

Fig. 4: Feature selection and attribute specification process

Figure 4 depicts how the features selection and attribute specification pro-
cesses are done in MANILA. In particular, figure 4a details how the features of
the Dataset are selected inside the configuration. Note how features in contrast
with already selected ones are automatically disabled by the system (e.g., the
Binary feature is disabled since the MultiClass feature is selected). This au-
tomatic cut of the ExtFM guides the data scientist in defining configurations
that always lead to valid (i.e., executable) experiments. Figure 4b details how
attributes can be specified during the definition of the configuration. In partic-
ular, the rightmost column in figure 4b displays the attribute value specified by
the data scientist (e.g., the name of the label is y, and the positive value is 2).
During the experiment generation step, a process will automatically check if all
the required attributes (e.g., label name) have been defined. Otherwise, it will
ask the data scientist to fill them.

5.3 Experiment generation

From the XML file describing an experiment configuration, it is possible to
generate a Python script implementing the defined experiment.

<feature automatic="selected" manual="undefined" name="

Dataset"/>

<feature automatic="selected" manual="undefined" name="Label"

>

<attribute name="Positive value" value="2"/>

<attribute name="Name" value="contr_use"/>

</feature >

14 G. d’Aloisio et al.

<feature automatic="unselected" manual="undefined" name="

Binary"/>

<feature automatic="undefined" manual="selected" name="

MultiClass"/>

Listing 1.1: Portion of configuration file

Listing 1.1 shows a portion of the configuration file derived from the fea-
ture selection process. In particular, it can be seen how the Dataset and the
Label features have been automatically selected by the system (features with
name="Dataset" and name="Label" and automatic="selected"), the Multi-
Class feature has been manually selected by the data scientist (feature with
name="MultiClass" and manual="selected"), and the Binary feature was not
selected (feature with name="Binary" and both automatic and manual un-
selected). In addition, the name and the value of two Label attributes (i.e.,
Positive value equal to 2 and Name equal to contr use) are reported.

The structure of the configuration file makes it easy to be parsed by a proper
script. In MANILA, we implemented a Python parser that reads the configura-
tion file given as input and generates a set of scripts implementing the defined
experiment. The parser can be invoked using the Python interpreter with the
following command shown in listing 1.2.

$ python generator.py -n <CONFIGURATION FILE PATH >

Listing 1.2: Python parser invocation

In particular, the parser first checks if all the required attributes (e.g., the
label’s name) are set. If some of them are not set, it asks the data scientist to
fill them in before continuing the parsing. Otherwise, it selects all the features
with automatic="selected" or manual="select" and uses them to fill a Jinja2
template [53]. The generated quality-evaluation experiment follows the same
structure of algorithm 1. It is embedded inside a Python function that takes
as input the dataset to use (listing 1.3). An example of a generated file can be
accessed on the GitHub [22] or Zenodo [23] repository.

def experiment(data):

quality evaluation experiment

Listing 1.3: Quality-testing experiment signature

In addition to the main file, MANILA generates also a set of Python files
needed to execute the experiment and an environment.yml file containing the
specification of the conda [1] environment needed to perform the experiment.
All the files are generated inside a folder named gen.

5.4 Experiment execution

The generated experiment can be invoked directly through the Python inter-
preter using the command given in listing 1.4. Otherwise, it can be called through

Extended Feature Models for Quality-Based ML Development 15

a REST API or any other interface such as a desktop application, or a Scien-
tific Workflow Management System like KNIME [44,10]. This generality of our
experimental workflow, makes it very flexible and suitable to many use-cases.

$ python main.py -d <DATASET PATH >

Listing 1.4: Experiment invocation

The experiment applies each ML algorithm with each quality method and
returns a report using the adequate selected metrics along with the method
achieving the best QA. It is worth noting how each quality method is evaluated
individually on the selected ML algorithm, and for each QA, a corresponding
report is returned by the system. Figure 5 reports an example of how the quality

Quality Evaluation Process
Fairness report

Fairness Metric 1
...

Fairness Metric j

Explainability report

Explainability Metric 1
...

Explainability Metric k

Best Fairness
Method

Best
Explainability

Method

Method n...Method 1

Explainability

Method 1 Method m...

Fairness

ML Method 2

ML Method 1

ML Method 3

Fig. 5: Quality evaluation process example

evaluation process is done in MANILA. In this example, the data scientist has
selected three ML algorithms and wants to assure Fairness and Explainability.
She has selected n methods to assure Fairness and m methods to assure Ex-
plainability. In addition, she has selected j metrics for Fairness and k metrics
for Explainability. Then, the testing process performs two parallel set of exper-
iments. In the first, it applies the n fairness methods to each ML algorithm
accordingly and computes the j fairness metrics. In the second, it applies the m
Explainability methods to the ML algorithms and computes the k Explainabil-
ity metrics. Finally, the process returns two reports synthesising the obtained
results for Fairness and Explainability along with the ML algorithms with the
best Fairness and Explainability, respectively. If the data scientist chooses to see
the results in tabular form (i.e., selects the Tabular feature in the ExtFM), then
the results are saved in a CSV file. Otherwise, the charts displaying the results
are saved as PNG files. The ML algorithm returned by the experiment is instead
saved as a pickle file [2]. We have chosen this format since it is a standard format
to store serialized objects in Python and can be easily imported in other scripts.

Finally, it is worth noting how the generated experiment workflow is written
in Python and can be customised to address particular stakeholders’ needs or
evaluate other quality methods.

16 G. d’Aloisio et al.

6 Proof of Concept

To prove the ability of MANILA in supporting the quality-based development
of ML systems, we implemented with MANILA a fair classification system to
predict the frequency of contraceptive use by women, using a famous dataset
in the Fairness literature [42]. This use case is reasonable since fairness has
acquired much importance in recent years, partly because of the sustainable
goals of the UN [51]. The first step in the quality development process is feature

(a) Selected features of the Dataset (b) Attributes of the Dataset

Fig. 6: Dataset specification

selection. The ML task to solve is a multi-class classification problem [4], hence
in the ExtFM we selected the feature MultiClass for the Label and we specified
its name and the positive value to consider for the fairness evaluation (long-
term use). We will use a CSV dataset file, so we specified this feature in the
configuration. Finally, accordingly to the literature [42], we specified that the
dataset has multiple sensitive variables to consider for fairness, and we specified
their names and privileged and unprivileged values. Figure 6 reports the selected
features of the Dataset and the attributes specified.

Next, we specified that we want to use a Standard Scaler algorithm to normal-
ize the data and we selected the following ML algorithms for classification: Logis-
tic Regression[48], Support Vector Classifier [52], and Gradient Boosting Classi-
fier [28]. Figure 7 reports the Fairness methods we want to test. Note how many
methods have been automatically disabled by the system based on the features
already selected2. Further, we specified the metrics we want to use to evaluate
Fairness and Effectiveness: Accuracy [60], Zero One Loss [25], Disparate Impact
[27], Statistical Parity [41], and Equalized Odds [33], and the Harmonic Mean as
aggregation function (we have chosen this aggregation function since it is widely
used in the literature). Finally, we specified that we want to perform a 10-fold
cross validation [59] and that we want the results in tabular form without the

2 In particular, these methods have been disabled because they do not support multi-
class classification or multiple sensitive variables

Extended Feature Models for Quality-Based ML Development 17

(a) Pre-processing methods (b) In-processing methods

Fig. 7: Selected Fairness methods

generation of a chart. From the given configuration, MANILA generates all the
python files needed to run the quality-assessment experiment. In particular, the
generated experiment trains and tests all the selected ML algorithm (i.e., Lo-
gistic Regression, Support Vector Classifier, and Gradient Boosting Classifier)
applying all the selected fairness methods properly (i.e., DEMV, Exponentiated
Gradient, and Grid Search). Finally, it computes the selected metrics on the
trained ML algorithms and returns a report of the metrics along with the fully
trained ML algorithm with the best fairness. All the generated files are available
on Zenodo [23] and Github [22]. The generated experiment was executed di-

Table 2: Generated results
Fairness Method ML Model Stat Par Eq Odds ZO Loss Disp Imp Accuracy HMean

demv svm 0.004 0.216 0.273 0.708 0.546 0.705

demv gradient -0.006 0.197 0.276 0.689 0.561 0.702

demv logreg 0.003 0.193 0.225 0.676 0.511 0.7

grid gradient -0.057 0.21 0.167 0.749 0.443 0.694

eg gradient -0.09 0.183 0.309 0.658 0.546 0.685

grid logreg -0.012 0.241 0.26 0.815 0.445 0.679

eg svm -0.109 0.16 0.337 0.549 0.546 0.652

eg logreg -0.107 0.218 0.35 0.543 0.509 0.617

grid svc -0.197 0.273 0.295 0.197 0.435 0.301

rectly from the python interpreter, and the obtained results are available in table
2. In the table are reported the Fairness enhancing methods, the ML algorithms
and all the metrics computed. The table has been automatically ordered based
on the given aggregation function (i.e., the rightmost column HMean). From
the results, we can see that the Support Vector Classifier (i.e., svc in the table)
and the DEMV fairness method can achieve the best Fairness and Effectiveness
trade-off, since they have the highest HMean value (highlighted in green in table
2). Hence, the ML algorithm returned by the experiment is the Support Vec-
tor Classifier, trained with the full dataset after the application of the DEMV
algorithm.

18 G. d’Aloisio et al.

7 Threats to Validity

Although the QA considered in MANILA are the most relevant and the most
cited in the literature, there could be other QA highly affecting the environ-
ment/end users of the ML system that are not focused prominently by existing
papers. In addition, the proposed experimental workflow is based on the consid-
ered QA; there could be other QA not considered at the time of this paper that
should be evaluated differently.

8 Conclusion and Future Work

In this paper, we have presented MANILA, a novel approach to democratize the
quality-based development of ML systems. First, we have identified the most in-
fluential quality properties in ML systems by selecting the quality attributes that
are most cited in the literature. Next, we have presented a general workflow for
the quality-based development of ML systems. Finally, we described MANILA in
detail by first explaining how the general workflow can be formalized through an
ExtFM. Next, we detailed all the steps required to develop a quality ML system
using MANILA. We started from the low-code configuration of the experiment
to perform; we described how a Python implementation could be generated from
such a configuration. Finally, we showed how the execution of the experiment
could identify the method better satisfying a given quality requirement. We have
demonstrated the ability of MANILA in guiding the data scientists through the
quality-based development of ML systems by implementing a fair multi-class
classification system to predict the use of contraceptive methods by women.

In future, we plan to improve MANILA by extending the ExtFM with addi-
tional methods enhancing other quality attributes and by implementing in the
framework the trade-off analysis that combines the different quality attribute
evaluations when required by means of Pareto-front functions. MANILA appears
to be easy to use and very general, able to embed different quality attributes
that are quantitatively measured. To demonstrate our intuition, we will con-
duct a user evaluation of MANILA, to evaluate its usability by involving experts
and not experts of the quality ML system development. Some groups we aim to
involve are: master students in computer science and applied data science (i.e.,
non-expert users), data scientists working in industries, and researchers studying
ML development and quality assessment (i.e., expert users). In addition, since
MANILA supports the configuration of an experiment by running all possible
combinations of the selected features, a limit of the proposed approach can be
its complexity and the time needed to obtain the results. Such limitation is mit-
igated by the feature selection step, which demands the user to choose which
features to include in the experiment. As future work, to enlarge the MANILA
usage, we will better study such aspects and provide guidelines to the users on
how to mitigate such potential limitations.

Extended Feature Models for Quality-Based ML Development 19

References

1. Conda website, https://docs.conda.io/
2. Pickle documentation, https://docs.python.org/3/library/pickle.html
3. Agarwal, A., Beygelzimer, A., Dudik, M., Langford, J., Wallach, H.: A Reductions

Approach to Fair Classification. In: Proceedings of the 35th International Confer-
ence on Machine Learning. pp. 60–69. PMLR (Jul 2018), https://proceedings.mlr.
press/v80/agarwal18a.html, iSSN: 2640-3498

4. Aly, M.: Survey on multiclass classification methods. Neural Netw 19(1-9), 2
(2005)

5. Amershi, S., Begel, A., Bird, C., DeLine, R., Gall, H., Kamar, E., Nagappan,
N., Nushi, B., Zimmermann, T.: Software Engineering for Machine Learning: A
Case Study. In: 2019 IEEE/ACM 41st International Conference on Software Engi-
neering: Software Engineering in Practice (ICSE-SEIP). pp. 291–300. IEEE, Mon-
treal, QC, Canada (May 2019). https://doi.org/10.1109/ICSE-SEIP.2019.00042,
https://ieeexplore.ieee.org/document/8804457/

6. Apel, S., Batory, D., Kästner, C., Saake, G.: Feature-oriented software product
lines. Springer (2016)

7. Azimi, S., Pahl, C.: A layered quality framework for machine learning-driven data
and information models. In: ICEIS (1). pp. 579–587 (2020)

8. Bellamy, R.K., Dey, K., Hind, M., Hoffman, S.C., Houde, S., Kannan, K., Lohia,
P., Martino, J., Mehta, S., Mojsilović, A., et al.: Ai fairness 360: An extensible
toolkit for detecting and mitigating algorithmic bias. IBM Journal of Research
and Development 63(4/5), 4–1 (2019)

9. Benavides, D., Segura, S., Ruiz-Cortés, A.: Automated analysis of feature models
20 years later: A literature review. Information Systems 35(6), 615–636 (Sep 2010).
https://doi.org/10.1016/j.is.2010.01.001, https://www.sciencedirect.com/science/
article/pii/S0306437910000025

10. Berthold, M.R., Cebron, N., Dill, F., Gabriel, T.R., Kötter, T., Meinl, T., Ohl,
P., Thiel, K., Wiswedel, B.: Knime - the konstanz information miner: Version 2.0
and beyond. SIGKDD Explor. Newsl. 11(1), 26–31 (Nov 2009). https://doi.org/
10.1145/1656274.1656280, https://doi-org.univaq.clas.cineca.it/10.1145/1656274.
1656280

11. Bird, S., Dud́ık, M., Edgar, R., Horn, B., Lutz, R., Milan, V.,
Sameki, M., Wallach, H., Walker, K.: Fairlearn: A toolkit for assess-
ing and improving fairness in AI. Tech. Rep. MSR-TR-2020-32, Mi-
crosoft (May 2020), https://www.microsoft.com/en-us/research/publication/
fairlearn-a-toolkit-for-assessing-and-improving-fairness-in-ai/

12. Bosch, J., Olsson, H.H., Crnkovic, I.: Engineering AI Systems: A Re-
search Agenda (2021). https://doi.org/10.4018/978-1-7998-5101-1.ch001,
https://www.igi-global.com/chapter/engineering-ai-systems/www.igi-global.
com/chapter/engineering-ai-systems/266130, iSBN: 9781799851011 Pages: 1-19
Publisher: IGI Global

13. Braiek, H.B., Khomh, F.: On testing machine learning programs. Jour-
nal of Systems and Software 164, 110542 (2020). https://doi.org/https:
//doi.org/10.1016/j.jss.2020.110542, https://www.sciencedirect.com/science/
article/pii/S0164121220300248

14. Buckland, M., Gey, F.: The relationship between recall and precision. Journal of
the American society for information science 45(1), 12–19 (1994), publisher: Wiley
Online Library

https://docs.conda.io/
https://docs.python.org/3/library/pickle.html
https://proceedings.mlr.press/v80/agarwal18a.html
https://proceedings.mlr.press/v80/agarwal18a.html
https://doi.org/10.1109/ICSE-SEIP.2019.00042
https://doi.org/10.1109/ICSE-SEIP.2019.00042
https://ieeexplore.ieee.org/document/8804457/
https://doi.org/10.1016/j.is.2010.01.001
https://doi.org/10.1016/j.is.2010.01.001
https://www.sciencedirect.com/science/article/pii/S0306437910000025
https://www.sciencedirect.com/science/article/pii/S0306437910000025
https://doi.org/10.1145/1656274.1656280
https://doi.org/10.1145/1656274.1656280
https://doi.org/10.1145/1656274.1656280
https://doi.org/10.1145/1656274.1656280
https://doi-org.univaq.clas.cineca.it/10.1145/1656274.1656280
https://doi-org.univaq.clas.cineca.it/10.1145/1656274.1656280
https://www.microsoft.com/en-us/research/publication/fairlearn-a-toolkit-for-assessing-and-improving-fairness-in-ai/
https://www.microsoft.com/en-us/research/publication/fairlearn-a-toolkit-for-assessing-and-improving-fairness-in-ai/
https://doi.org/10.4018/978-1-7998-5101-1.ch001
https://doi.org/10.4018/978-1-7998-5101-1.ch001
https://www.igi-global.com/chapter/engineering-ai-systems/www.igi-global.com/chapter/engineering-ai-systems/266130
https://www.igi-global.com/chapter/engineering-ai-systems/www.igi-global.com/chapter/engineering-ai-systems/266130
https://doi.org/https://doi.org/10.1016/j.jss.2020.110542
https://doi.org/https://doi.org/10.1016/j.jss.2020.110542
https://doi.org/https://doi.org/10.1016/j.jss.2020.110542
https://doi.org/https://doi.org/10.1016/j.jss.2020.110542
https://www.sciencedirect.com/science/article/pii/S0164121220300248
https://www.sciencedirect.com/science/article/pii/S0164121220300248

20 G. d’Aloisio et al.

15. Carvalho, D.V., Pereira, E.M., Cardoso, J.S.: Machine learning interpretability: A
survey on methods and metrics. Electronics 8(8), 832 (2019)

16. Caton, S., Haas, C.: Fairness in machine learning: A survey (2020)
17. Celis, L.E., Huang, L., Keswani, V., Vishnoi, N.K.: Classification with fairness

constraints: A meta-algorithm with provable guarantees. In: Proceedings of the
conference on fairness, accountability, and transparency. pp. 319–328 (2019)

18. Chakraborty, J., Majumder, S., Yu, Z., Menzies, T.: Fairway: A way to build
fair ml software. In: Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. pp. 654–665 (2020)

19. Chen, L., Ali Babar, M., Nuseibeh, B.: Characterizing architecturally significant
requirements. IEEE Software 30(2), 38–45 (2013). https://doi.org/10.1109/MS.
2012.174

20. Chen, Z., Zhang, J.M., Hort, M., Sarro, F., Harman, M.: Fairness Testing: A Com-
prehensive Survey and Analysis of Trends (Aug 2022), http://arxiv.org/abs/2207.
10223, arXiv:2207.10223 [cs]

21. Clifton, C.: Privacy Metrics. In: LIU, L., ÖZSU, M.T. (eds.) Encyclope-
dia of Database Systems, pp. 2137–2139. Springer US, Boston, MA (2009).
https://doi.org/10.1007/978-0-387-39940-9\ 272, https://doi.org/10.1007/
978-0-387-39940-9 272

22. d’Aloisio, G., Marco, A.D., Stilo, G.: Manila github repository (Jan 2023), https:
//github.com/giordanoDaloisio/manila

23. d’Aloisio, G., Marco, A.D., Stilo, G.: Manila zenodo repository (Jan 2023). https:
//doi.org/10.5281/zenodo.7525759, https://doi.org/10.5281/zenodo.7525759

24. Di Sipio, C., Di Rocco, J., Di Ruscio, D., Nguyen, D.P.T.: A Low-Code Tool
Supporting the Development of Recommender Systems. In: Fifteenth ACM Con-
ference on Recommender Systems. pp. 741–744. ACM, Amsterdam Netherlands
(Sep 2021). https://doi.org/10.1145/3460231.3478885, https://dl.acm.org/doi/10.
1145/3460231.3478885

25. Domingos, P., Pazzani, M.: On the Optimality of the Simple Bayesian Classifier
under Zero-One Loss. Machine Learning 29(2), 103–130 (Nov 1997). https://doi.
org/10.1023/A:1007413511361, https://doi.org/10.1023/A:1007413511361

26. d’Aloisio, G., D’Angelo, A., Di Marco, A., Stilo, G.: Debiaser for Multiple Vari-
ables to enhance fairness in classification tasks. Information Processing & Man-
agement 60(2), 103226 (Mar 2023). https://doi.org/10.1016/j.ipm.2022.103226,
https://www.sciencedirect.com/science/article/pii/S0306457322003272

27. Feldman, M., Friedler, S.A., Moeller, J., Scheidegger, C., Venkatasubramanian, S.:
Certifying and Removing Disparate Impact. In: Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining.
pp. 259–268. ACM, Sydney NSW Australia (Aug 2015). https://doi.org/10.1145/
2783258.2783311, https://dl.acm.org/doi/10.1145/2783258.2783311

28. Friedman, J.H.: Stochastic gradient boosting. Computational statistics & data
analysis 38(4), 367–378 (2002), publisher: Elsevier

29. Galindo, J.A., Benavides, D., Trinidad, P., Gutiérrez-Fernández, A.M., Ruiz-
Cortés, A.: Automated analysis of feature models: Quo vadis? Computing
101(5), 387–433 (May 2019). https://doi.org/10.1007/s00607-018-0646-1, http:
//link.springer.com/10.1007/s00607-018-0646-1

30. Giray, G.: A software engineering perspective on engineering machine learning
systems: State of the art and challenges. Journal of Systems and Software p. 111031
(2021)

https://doi.org/10.1109/MS.2012.174
https://doi.org/10.1109/MS.2012.174
https://doi.org/10.1109/MS.2012.174
https://doi.org/10.1109/MS.2012.174
http://arxiv.org/abs/2207.10223
http://arxiv.org/abs/2207.10223
https://doi.org/10.1007/978-0-387-39940-9_272
https://doi.org/10.1007/978-0-387-39940-9_272
https://doi.org/10.1007/978-0-387-39940-9_272
https://doi.org/10.1007/978-0-387-39940-9_272
https://github.com/giordanoDaloisio/manila
https://github.com/giordanoDaloisio/manila
https://doi.org/10.5281/zenodo.7525759
https://doi.org/10.5281/zenodo.7525759
https://doi.org/10.5281/zenodo.7525759
https://doi.org/10.5281/zenodo.7525759
https://doi.org/10.5281/zenodo.7525759
https://doi.org/10.1145/3460231.3478885
https://doi.org/10.1145/3460231.3478885
https://dl.acm.org/doi/10.1145/3460231.3478885
https://dl.acm.org/doi/10.1145/3460231.3478885
https://doi.org/10.1023/A:1007413511361
https://doi.org/10.1023/A:1007413511361
https://doi.org/10.1023/A:1007413511361
https://doi.org/10.1023/A:1007413511361
https://doi.org/10.1023/A:1007413511361
https://doi.org/10.1016/j.ipm.2022.103226
https://doi.org/10.1016/j.ipm.2022.103226
https://www.sciencedirect.com/science/article/pii/S0306457322003272
https://doi.org/10.1145/2783258.2783311
https://doi.org/10.1145/2783258.2783311
https://doi.org/10.1145/2783258.2783311
https://doi.org/10.1145/2783258.2783311
https://dl.acm.org/doi/10.1145/2783258.2783311
https://doi.org/10.1007/s00607-018-0646-1
https://doi.org/10.1007/s00607-018-0646-1
http://link.springer.com/10.1007/s00607-018-0646-1
http://link.springer.com/10.1007/s00607-018-0646-1

Extended Feature Models for Quality-Based ML Development 21

31. Goncalves Jr., P.M., Barros, R.S.M.: Automating data preprocessing with dmpml
and kddml. In: 2011 10th IEEE/ACIS International Conference on Computer and
Information Science. pp. 97–103 (2011). https://doi.org/10.1109/ICIS.2011.23

32. Hamada, K., Ishikawa, F., Masuda, S., Myojin, T., Nishi, Y., Ogawa, H., Toku,
T., Tokumoto, S., Tsuchiya, K., Ujita, Y., et al.: Guidelines for quality assurance
of machine learning-based artificial intelligence. In: SEKE. pp. 335–341 (2020)

33. Hardt, M., Price, E., Price, E., Srebro, N.: Equality of Opportunity in Super-
vised Learning. In: Advances in Neural Information Processing Systems. vol. 29.
Curran Associates, Inc. (2016), https://proceedings.neurips.cc/paper/2016/hash/
9d2682367c3935defcb1f9e247a97c0d-Abstract.html

34. He, X., Zhao, K., Chu, X.: Automl: A survey of the state-of-the-art.
Knowledge-Based Systems 212, 106622 (2021). https://doi.org/https://doi.org/
10.1016/j.knosys.2020.106622, https://www.sciencedirect.com/science/article/pii/
S0950705120307516

35. Ishikawa, F.: Concepts in quality assessment for machine learning-from test data
to arguments. In: International Conference on Conceptual Modeling. pp. 536–544.
Springer (2018)

36. ISO: ISO/IEC 25010:2011. Tech. rep. (2011), https://www.iso.org/cms/render/
live/en/sites/isoorg/contents/data/standard/03/57/35733.html

37. Kamiran, F., Calders, T.: Data preprocessing techniques for classification with-
out discrimination. Knowledge and Information Systems 33(1), 1–33 (Oct
2012). https://doi.org/10.1007/s10115-011-0463-8, http://link.springer.com/10.
1007/s10115-011-0463-8

38. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented
domain analysis (foda) feasibility study. Tech. rep., Carnegie-Mellon Univ Pitts-
burgh Pa Software Engineering Inst (1990)

39. Kearns, M., Neel, S., Roth, A., Wu, Z.S.: An empirical study of rich subgroup
fairness for machine learning. In: Proceedings of the conference on fairness, ac-
countability, and transparency. pp. 100–109 (2019)

40. Kumeno, F.: Sofware engneering challenges for machine learning applications: A
literature review. Intelligent Decision Technologies 13(4), 463–476 (2019)

41. Kusner, M.J., Loftus, J., Russell, C., Silva, R.: Counterfactual fairness.
In: Advances in Neural Information Processing Systems. vol. 30. Cur-
ran Associates, Inc. (2017), https://proceedings.neurips.cc/paper/2017/hash/
a486cd07e4ac3d270571622f4f316ec5-Abstract.html

42. Lim, T.S., Loh, W.Y., Shih, Y.S.: A comparison of prediction accuracy, complexity,
and training time of thirty-three old and new classification algorithms. Machine
learning 40(3), 203–228 (2000), publisher: Springer

43. Linardatos, P., Papastefanopoulos, V., Kotsiantis, S.: Explainable ai: A review of
machine learning interpretability methods. Entropy 23(1), 18 (2021)

44. Liu, J., Pacitti, E., Valduriez, P., Mattoso, M.: A survey of data-intensive scientific
workflow management. Journal of Grid Computing 13(4), 457–493 (2015)

45. Mart́ınez-Plumed, F., Contreras-Ochando, L., Ferri, C., Orallo, J.H., Kull, M.,
Lachiche, N., Quintana, M.J.R., Flach, P.A.: Crisp-dm twenty years later: From
data mining processes to data science trajectories. IEEE Transactions on Knowl-
edge and Data Engineering (2019)

46. Mart́ınez-Fernández, S., Bogner, J., Franch, X., Oriol, M., Siebert, J., Tren-
dowicz, A., Vollmer, A.M., Wagner, S.: Software Engineering for AI-Based Sys-
tems: A Survey. ACM Transactions on Software Engineering and Methodology
31(2), 37e:1–37e:59 (Apr 2022). https://doi.org/10.1145/3487043, https://doi.org/
10.1145/3487043

https://doi.org/10.1109/ICIS.2011.23
https://doi.org/10.1109/ICIS.2011.23
https://proceedings.neurips.cc/paper/2016/hash/9d2682367c3935defcb1f9e247a97c0d-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/9d2682367c3935defcb1f9e247a97c0d-Abstract.html
https://doi.org/https://doi.org/10.1016/j.knosys.2020.106622
https://doi.org/https://doi.org/10.1016/j.knosys.2020.106622
https://doi.org/https://doi.org/10.1016/j.knosys.2020.106622
https://doi.org/https://doi.org/10.1016/j.knosys.2020.106622
https://www.sciencedirect.com/science/article/pii/S0950705120307516
https://www.sciencedirect.com/science/article/pii/S0950705120307516
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/03/57/35733.html
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/03/57/35733.html
https://doi.org/10.1007/s10115-011-0463-8
https://doi.org/10.1007/s10115-011-0463-8
http://link.springer.com/10.1007/s10115-011-0463-8
http://link.springer.com/10.1007/s10115-011-0463-8
https://proceedings.neurips.cc/paper/2017/hash/a486cd07e4ac3d270571622f4f316ec5-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/a486cd07e4ac3d270571622f4f316ec5-Abstract.html
https://doi.org/10.1145/3487043
https://doi.org/10.1145/3487043
https://doi.org/10.1145/3487043
https://doi.org/10.1145/3487043

22 G. d’Aloisio et al.

47. Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., Galstyan, A.: A Survey on
Bias and Fairness in Machine Learning. ACM Computing Surveys 54(6), 1–35 (Jul
2021). https://doi.org/10.1145/3457607, https://dl.acm.org/doi/10.1145/3457607

48. Menard, S.: Applied logistic regression analysis, vol. 106. Sage (2002)
49. Molnar, C.: Interpretable machine learning. Lulu. com (2020)
50. Muccini, H., Vaidhyanathan, K.: Software Architecture for ML-based Systems:

What Exists and What Lies Ahead. In: 2021 IEEE/ACM 1st Workshop on AI
Engineering - Software Engineering for AI (WAIN). pp. 121–128 (May 2021). https:
//doi.org/10.1109/WAIN52551.2021.00026

51. Nations, U.: THE 17 GOALS | Sustainable Development, https://sdgs.un.org/goals
52. Noble, W.S.: What is a support vector machine? Nature biotechnology 24(12),

1565–1567 (2006), publisher: Nature Publishing Group
53. PalletsProject: Jinja website, https://jinja.palletsprojects.com/
54. Patro, S., Sahu, K.K.: Normalization: A preprocessing stage. arXiv preprint

arXiv:1503.06462 (2015)
55. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,

Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)

56. Putzel, P., Lee, S.: Blackbox Post-Processing for Multiclass Fairness.
arXiv:2201.04461 [cs] (Jan 2022), http://arxiv.org/abs/2201.04461, arXiv:
2201.04461

57. Refaeilzadeh, P., Tang, L., Liu, H.: Cross-validation. Encyclopedia of database
systems 5, 532–538 (2009)

58. Refaeilzadeh, P., Tang, L., Liu, H.: Cross-Validation, pp. 1–7. Springer New York,
New York, NY (2016). https://doi.org/10.1007/978-1-4899-7993-3\ 565-2

59. Refaeilzadeh, P., Tang, L., Liu, H.: Cross-Validation. In: Encyclopedia of Database
Systems, pp. 1–7. Springer New York, New York, NY (2016). https://doi.org/10.
1007/978-1-4899-7993-3\ 565-2

60. Rosenfield, G., Fitzpatrick-Lins, K.: A coefficient of agreement as a measure of the-
matic classification accuracy. Photogrammetric Engineering and Remote Sensing
52(2), 223–227 (1986), http://pubs.er.usgs.gov/publication/70014667

61. Rönkkö, M., Heikkinen, J., Kotovirta, V., Chandrasekar, V.: Automated pre-
processing of environmental data. Future Generation Computer Systems 45,
13–24 (2015). https://doi.org/https://doi.org/10.1016/j.future.2014.10.011, https:
//www.sciencedirect.com/science/article/pii/S0167739X14002040

62. Sahay, A., Indamutsa, A., Di Ruscio, D., Pierantonio, A.: Supporting the under-
standing and comparison of low-code development platforms. In: 2020 46th Eu-
romicro Conference on Software Engineering and Advanced Applications (SEAA).
pp. 171–178. IEEE (2020)

63. Saleiro, P., Kuester, B., Hinkson, L., London, J., Stevens, A., Anisfeld, A., Rodolfa,
K.T., Ghani, R.: Aequitas: A bias and fairness audit toolkit. arXiv preprint
arXiv:1811.05577 (2018)

64. Siebert, J., Joeckel, L., Heidrich, J., Trendowicz, A., Nakamichi, K., Ohashi, K.,
Namba, I., Yamamoto, R., Aoyama, M.: Construction of a quality model for ma-
chine learning systems. Software Quality Journal pp. 1–29 (2021)

65. de Souza Nascimento, E., Ahmed, I., Oliveira, E., Palheta, M.P., Steinmacher, I.,
Conte, T.: Understanding development process of machine learning systems: Chal-
lenges and solutions. In: 2019 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM). pp. 1–6. IEEE (2019)

https://doi.org/10.1145/3457607
https://doi.org/10.1145/3457607
https://dl.acm.org/doi/10.1145/3457607
https://doi.org/10.1109/WAIN52551.2021.00026
https://doi.org/10.1109/WAIN52551.2021.00026
https://doi.org/10.1109/WAIN52551.2021.00026
https://doi.org/10.1109/WAIN52551.2021.00026
https://sdgs.un.org/goals
https://jinja.palletsprojects.com/
http://arxiv.org/abs/2201.04461
https://doi.org/10.1007/978-1-4899-7993-3_565-2
https://doi.org/10.1007/978-1-4899-7993-3_565-2
https://doi.org/10.1007/978-1-4899-7993-3_565-2
https://doi.org/10.1007/978-1-4899-7993-3_565-2
https://doi.org/10.1007/978-1-4899-7993-3_565-2
https://doi.org/10.1007/978-1-4899-7993-3_565-2
http://pubs.er.usgs.gov/publication/70014667
https://doi.org/https://doi.org/10.1016/j.future.2014.10.011
https://doi.org/https://doi.org/10.1016/j.future.2014.10.011
https://www.sciencedirect.com/science/article/pii/S0167739X14002040
https://www.sciencedirect.com/science/article/pii/S0167739X14002040

Extended Feature Models for Quality-Based ML Development 23

66. Studer, S., Bui, T.B., Drescher, C., Hanuschkin, A., Winkler, L., Peters, S., Müller,
K.R.: Towards crisp-ml (q): a machine learning process model with quality assur-
ance methodology. Machine Learning and Knowledge Extraction 3(2), 392–413
(2021)

67. Taha, A.A., Hanbury, A.: Metrics for evaluating 3D medical image segmentation:
analysis, selection, and tool. BMC Medical Imaging 15(1), 29 (Aug 2015). https://
doi.org/10.1186/s12880-015-0068-x, https://doi.org/10.1186/s12880-015-0068-x

68. Thüm, T., Kästner, C., Benduhn, F., Meinicke, J., Saake, G., Leich, T.: Featureide:
An extensible framework for feature-oriented software development. Science of
Computer Programming 79, 70–85 (2014)

69. Tramer, F., Atlidakis, V., Geambasu, R., Hsu, D., Hubaux, J.P., Humbert, M.,
Juels, A., Lin, H.: Fairtest: Discovering unwarranted associations in data-driven
applications. In: 2017 IEEE European Symposium on Security and Privacy (Eu-
roS&P). pp. 401–416. IEEE (2017)

70. Villamizar, H., Escovedo, T., Kalinowski, M.: Requirements engineering for ma-
chine learning: A systematic mapping study. In: SEAA. pp. 29–36 (2021)

71. Xu, R., Baracaldo, N., Joshi, J.: Privacy-Preserving Machine Learning: Methods,
Challenges and Directions. arXiv:2108.04417 [cs] (Sep 2021), http://arxiv.org/abs/
2108.04417, arXiv: 2108.04417

72. Zhang, J.M., Harman, M., Ma, L., Liu, Y.: Machine learning testing: Survey, land-
scapes and horizons. IEEE Transactions on Software Engineering (2020)

73. Zhou, J., Gandomi, A.H., Chen, F., Holzinger, A.: Evaluating the Quality of
Machine Learning Explanations: A Survey on Methods and Metrics. Electron-
ics 10(5), 593 (Jan 2021). https://doi.org/10.3390/electronics10050593, https:
//www.mdpi.com/2079-9292/10/5/593, number: 5 Publisher: Multidisciplinary
Digital Publishing Institute

https://doi.org/10.1186/s12880-015-0068-x
https://doi.org/10.1186/s12880-015-0068-x
https://doi.org/10.1186/s12880-015-0068-x
https://doi.org/10.1186/s12880-015-0068-x
https://doi.org/10.1186/s12880-015-0068-x
http://arxiv.org/abs/2108.04417
http://arxiv.org/abs/2108.04417
https://doi.org/10.3390/electronics10050593
https://doi.org/10.3390/electronics10050593
https://www.mdpi.com/2079-9292/10/5/593
https://www.mdpi.com/2079-9292/10/5/593

	Democratizing Quality-Based Machine Learning Development through Extended Feature Models

