
UNIVERSITÀ
DEGLI STUDI
DELL’AQUILA

COMUNE 
DELL’AQUILA

Approaches to Measure and 
Mitigate Algorithmic Bias

Giordano d’Aloisio

Università degli Studi dell’Aquila e SoBigData RI

CNR-ISTI

UNIVERSITA’
DEGLI STUDI
D’ANNUNZIO

PARTNER



Coded Bias

• In 2018 an MIT researcher was studying Amazon’s 
face recognition systems

• Those systems were not able to recognize her 
face

• At first, she thought it was an error in the system

• But then, she noticed that wearing a white mask 
the system was able to recognize her
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The system was biased against non-white 
women



Another Example

• COMPAS is an ML algorithm used by some 
courts in the US to predict recidivism of 
condemned people

• A study showed that, given two people with 
the same features but different race, the 
system was giving higher probability of 
recidivism to non-white people
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Let’s define better Bias and Fairness

• BIAS: systematic favouritism or 
discrimination in models' 
predictions towards individuals 
based on some sensitive 
features (like gender, race, and 
others)

• FAIRNESS: absence of 
favouritism or discrimination in 
models’ predictions 
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Is the concept of bias that simple?
• Actually not…

01/02/2024 Approaches to measure and mitigate algorithmic bias 5



Is the concept of bias that simple?
• Actually not…

01/02/2024 Approaches to measure and mitigate algorithmic bias 5



Is the concept of bias that simple?
• Actually not…

01/02/2024 Approaches to measure and mitigate algorithmic bias 5



Is the concept of bias that simple?
• Actually not…

01/02/2024 Approaches to measure and mitigate algorithmic bias 5



Is the concept of bias that simple?
• Actually not…

01/02/2024 Approaches to measure and mitigate algorithmic bias 5



Is the concept of bias that simple?
• Actually not…

01/02/2024 Approaches to measure and mitigate algorithmic bias 5

At least 23 different 
definitions of bias in the 

literature



From many definitions come many metrics
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From many definitions come many metrics
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At least 29 different metrics are available 
in the AIF360 library



Addressing the bias issue
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14 bias mitigation methods are available 
in the AIF360 repository… but many 

more are available from the literature!



What is missing?
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• Challenge 1: Most bias mitigation methods address binary 
classification. What about multi-class classification?



What is missing?

01/02/2024 Approaches to measure and mitigate algorithmic bias 8

• Challenge 1: Most bias mitigation methods address binary 
classification. What about multi-class classification?

• Challenge 2: Plenty of bias definitions, metrics and methods are 
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• Challenge 1: Most bias mitigation methods address binary 
classification. What about multi-class classification?

• Challenge 2: Plenty of bias definitions, metrics and methods are 
available. How can we guide non-expert users in developing fair ML 
systems?

• Challenge 3: Most fairness assessment approaches are domain and 
definition specific. How can we address non-traditional use cases?



Challenge 1

• Most of the bias mitigation approaches focus on binary classification

• However, bias is a relevant issue in many multi-class problems
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Addressing challenge 1

• To address this challenge, we propose
the Debiaser for Multiple Variables
(DEMV) [1-2]

• Novel algorithm to improve fairness in
binary and multi-class classification
problems

• Works by perfectly rebalance the
dataset’s sensitive groups

• Overcomes all the other multi-class
debiaser algorithms in the literature
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Challenge 2

• This can be a challenge for users that are non-expert on fairness

• Software engineering approaches can help us to formalize and
standardize the development of fair ML systems

• Hence, make the development easier even for non-expert users
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23 different 
definitions of bias

29 different 
metrics

14 different 
methods



Addressing challenge 2

• To this aim we propose
MANILA [3-4]

• A web application that guides
users in defining and
performing fairness and
effectiveness evaluations

• Available as an application in
the SoBigData RI
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Challenge 3

• Most of the fairness assessment tools available focus on specific 
definitions of fairness or cover traditional use cases

• What about non-traditional use cases (e.g., IoT?)
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Addressing challenge 3

• We propose MODNESS [5], a
model-driven framework to
conceptualize, design,
implement, and execute
fairness assessment analyses

• Allows to define different
concrete fairness analyses
starting from a single high-level
bias definition

• Allows to model custom metrics
for fairness assessment
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Many challenges are still open

• Addressing the trade-off between fairness and
other quality properties (e.g., privacy,
computational complexity,…)

• Early identify features leading to bias in a dataset

• Suggest to the user the best bias definition and
metric starting for a specific requirement

• Formally model a fairness specification

• And many more…
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Thank you for your attention!
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