A Low-Code Approach for Machine Learning Fairness Applied to IoT Data in Health Domain

<u>Giordano d'Aloisio</u>, Antinisca Di Marco

Università degli Studi dell'Aquila / Italy

giordano.daloisio@graduate.univaq.it

Outline

Introduction

- Proposed Approach
- > Use Case
- Live Demo

Introduction

- Machine Learning systems are widely used nowadays in many domains
- Many low-code systems have been proposed to make the ML development accessible also to non-expert users

- However, a low-code tool covering essential quality properties (e.g., fairness, explainability, privacy) of ML systems is still missing
- In this work, we target the Fairness quality property by presenting MANILA a low code platform for development of fair ML systems

Fairness development workflow

A general workflow for the development of fair ML systems can be sketched as following

MANILA [1]

MANILA is a low-code tool to support the development of fair ML systems

[1] Giordano d'Aloisio, Antinisca Di Marco, Giovanni Stilo "Democratizing Quality-Based Machine Learning Development through Extended Feature Models", FASE 2023

Fairness

- Fairness is the absence of prejudice or favoritism by a ML model over items identified by a set of *sensitive variables*
- > Fairness is usually defined by a set of relevant concepts

Fairness Metrics

- Measuring fairness means measuring the amount of discrimination performed by an ML model
- Metrics like Disparate Impact or Equal Opportunity measure the probability of getting the positive outcome predicted being in the unprivileged group or not

Nowadays is not possible to measure a priori the fairness of an ML model

Fairness Enhancing Methods

> Fairness enhancing approaches can be classified in three categories

MANILA's Extended Feature Model

MANILA is based on an Extended Feature Model that models each feature of an experimental evaluation

Extended Feature Model Constraints

10

These constraints guide the data scientist in the selection of features that always lead to a correct experiment Fairness ⇒ "Sensitive Variables" ExponentiatedGradient ∨ GridSearch ⇒ ¬"MLP Classifier" ∧ ¬"MLP Regressor" ¬GerryFairClassifier ∧ ¬MetaFairClassifier ∧ ¬AdversarialDebiasing ⇒ "ML Task" Classification ⇔ "Classification Metrics" ∧ ¬"Regression Metrics" "Classification Metrics" ⇒ ¬"Regression Metrics" Regression ⇔ "Regression Metrics" ∧ ¬"Classification Metrics" Fairness ⇒ "Fairness Metrics" ¬DIR ∨ ¬"Multiple sensitive vars" ¬MultiClass ∨ ¬Reweighing ¬DIR ∨ ¬MultiClass ¬AdversarialDebiasing v ¬MultiClass ¬MultiClass v ¬GerryFairClassifier ¬MultiClass ∨ ¬MetaFairClassifier ¬MultiClass ∨ ¬PrejudiceRemover ¬MultiClass ∨ ¬CalibratedEO ¬MultiClass ∨ ¬RejectOptionClassifier "Multiple sensitive vars"
¬PostProcessing SVC ⇒ ¬PostProcessing

Regression ⇒ ¬Fairness

"Gradient Descent Classifier" ⇒ ¬PostProcessing

Reweighing \Rightarrow ¬"MLP Classifier"

 $AUC \Rightarrow \neg MultiClass$

Extended Feature Model Implementation

The Extended Feature Model has been implemented as a web form > with a set of constraints among the fields

MANILA Select the features that comprise your experiment		
Dataset		
File Extension CSV Parquet Excel JSON Text HTML XML HDF5 Label		
Binary MultiClass Label Name *	Positive Value *	
Sensitive Variables Single Sensitive Variable Single Sensitive Variable		
Variable Name * Unprivileged Value * Privileged Value *		
Multiple Sensitive Variables Variable Namer.*	Unavial acced values *	Privilaged values *
Comma separated list of values	Comma separated list of values	Comma separated list of values
Dataset has an index column		
0		A

Use Case Scenario

SCG-RHC Dataset

Dataset of 73 patients to monitor changes in pulmonary arterial pressure (PAP) and pulmonary capillary wedge pressure (PCWP) using a chest-worn wearable patch.

Provides

- Demographic information of the patients
- Signals in the dataset recorded by the wearable patch
- > Useful to predict the clinical status of patient
- https://physionet.org/content/scg-rhc-wearable-database/1.0.0/

Experiment Description

- Train a Logistic Regression model to predict if a patient is under physiological challenge
- > Analyze if the model is biased against *women,* if so, mitigate the bias

MANILA in Action