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Il problema del bias

Nel 2018 unaricercatrice dell’IMT stava studiandoisistemidi z Q T} E D 'B 1 S
riconoscimento facciale di Amazon L} A
Questi sistemi non erano in grado di riconoscere il suo volto

All’inizio penso fosse un errore del sistema

Ma poiindossandouna maschera bianca noto che il sistema era in
grado diriconoscerla

Quindiil sistema non era in grado di riconoscere
donne non bianche




Un altro esempio..

Diversi giudici negli Stati Uniti hanno utilizzato per anniun sistema
diintelligenza artificiale per decidere se liberare o menoun
condannato

Questo sistema prevedeva la possibilita che un condannato avrebbe
ricommesso un crimine nei prossimi due anni

Dopouno studio attento del sistema € stato dimostrato che questo
algoritmo date due persone con stesse caratteristiche, ma di etnia
diversa, forniva una minore probabilita di recidiva alla persona
bianca

Quindi il sistema favoriva sistematicamente le
persone bianche solo in base alla loro etnia




Definiamo meglio il
concettodiBiase
Fairness

o BIAS: sistematico favoritismo o
discriminazione diindividui da parte di
un algoritmo sulla base di alcune loro
caratteristiche (esempio il sesso o I'etnia)

o FAIRNESS: assenza di discriminazione o
favoritismo da parte di un algoritmo




I1 concetto di bias non e cosl semplice..
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diffe

reactions and behavior from people and sometimes even leading to communication
errors.

(6) Temporal Bias. Temporal bias arises from diffe in populations and behaviors over time
[116]. An example can be observed in Twitter where people talking about a particular topic
start using a hashtag at some point to capture attention, then continue the discussion about
the event without using the hashtag [116, 142].

(7) Content Production Bias. Content Production bias arises from structural, lexical, semantic,
and syntactic differences in the contents generated by users [116]. An example of this type of
bias can be seen in Reference [114] where the differences in use of language across different
gender and age groups is discussed. The differences in use of language can also be seen
across and within countries and populations.

Existing work tries to categorize these bias definitions into groups, such as definitions falling
solely under data or user interaction. However, due to the exist of the feedback loop ph
enon [36), these definitions are intertwined, and we need a categorization that closely models this
situation. This feedback loop is not only existent between the data and the algorithm, but also
between the algorithms and user interaction [29]. Inspired by these papers, we modeled catego-
rization of bias definitions, as shown in Figure 1, and grouped these definitions on the arrows
of the loop where we thought they were most effective. We emphasize the fact again that these
definitions are intertwined, and one should consider how they affect each other in this cycle and
address them accordingly.

3.2 Data Bias Examples

There are multiple ways that discriminatory bias can seep into data. For instance, using unbalanced
data can create biases against underrepresented groups. Reference [166] analyzes some examples
of the biases that can exist in the data and algorithms and offers some recommendations and
suggestions toward mitigating these issues.

3.2.1 Examples of Bias in Machine Learning Data. In Reference [24], the authors show that
datasets such as IJB-A and Adience are imbalanced and contain mainly light-skinned subjects—
79.6% in IJB-A and 86.2% in Adience. This can bias the analysis towards dark-skinned groups who
are underrepresented in the data. In another instance, the way we use and analyze our data can
create bias when we do not consider different subgroups in the data. In Reference [24], the authors
also show that considering only male-female groups is not enough, but there is also a need to
use race to further subdivide the gender groups into light-skinned females, light-skinned males,
dark-skinned males, and dark-skinned females. It is only in this case that we can clearly observe
the bias towards dark-skinned females, as previously dark-skinned males would compromise for
dark-skinned females and would hide the underlying bias towards this subgroup. Popular machine-
learning datasets that serve as a base for most of the developed algorithms and tools can also be
biased—which can be harmful to the downstream applications that are based on these datasets. For
instance, ImageNet [131] and Open Images [86] are two widely used datasets in machine learning.
In Reference [138], researchers showed that these datasets suffer from rep ion bias and ad-
vocate for the need to incorporate geographic diversity and inclusi

while creating such datasets.

3.2.2  Examples of Data Bias in Medical Applications. These data biases can be more dangerous
in other sensitive applications. For example, in medical domains there are many instances in which
the data studied and used are skewed toward certain populations—which can have dangerous
q for the underrep d ¢ ities. Ref [97] showed how exclusion of

c
African-Americans resulted in their misclassification in clinical studies. so they became advocates

Piudi23 definizionidibias
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11 bias e la fairness possono essere misurati..
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in the areas of education and machine learning. In Reference [145], authors listed and explained
some of the definitions used for fairness in algorithmic classification problems. In Reference [135],
authors studied the general public’s perception of some of these fairness definitions in computer
science literature, Here, we will reiterate and provide some of the most widely used definitions,
along with their explanations inspired from Reference [145].

Definition 1 (Equalized Odds). The definition of equalized odds, provided by Reference [63],
states that “A predictor Y satisfies equalized odds with respect to protected attribute A and out-
come Y, if Y and A are independent conditional on Y. P(Y=1|A=0Y =y) = P(Y=1|A=1Y =y) , y€{0,1}"
This means that the probability of a person in the positive class being correctly assigned a positive
outcome and the probability of a person in a negative class being incorrectly assigned a positive
outcome should both be the same for the protected and unprotected group members [145]. In other
words, the equalized odds definition states that the protected and unprotected groups should have
equal rates for true positives and false positives.

Definition 2 (Equal Opportunity). “A binary predictor ¥ satisfies equal opportunity with respect
to Aand Y if P(Y=1/A=0Y=1) = P(Y=1|A=1Y=1)" [63]. This means that the probability of a person in
a positive class being assigned to a positive outcome should be equal for both protected and unpro-
tected (female and male) group members [145]. In other words, the equal opportunity definition
states that the protected and unprotected groups should have equal true positive rates.

Definition 3 (Demographic Parity). Also known as statistical parity. “A predictor Y satisfies de-
mographic parity if P(Y |A = 0) = P(Y|A = 1)” [48, 87]. The likelihood of a positive outcome [145)
should be the same regardless of whether the person is in the protected (e.g., female) group.

Definition 4 (Fairness through Awareness). “An algorithm is fair if it gives similar predictions to
similar individuals” (48, 87]. In other words, any two individuals who are similar with respect to a
similarity (inverse distance) metric defined for a particular task should receive a similar outcome.

Definition 5 (Fairness through Unawareness). “An algorithm is fair as long as any protected at-
tributes A are not explicitly used in the decision-making process” [61, 87].

Definition 6 (Treatment Equality). “Treatment equality is achieved when the ratio of false nega-
tives and false positives is the same for both protected group categories” [15].

Definition 7 (Test Fairness). “A score S = S(x) is lesl fair (well-calibrated) if it reflects the same
likelihood of recidivism ir ive of the individual’s group hip, R. That is, if for all
values of s, P(Y =1[S=5,R=b)=P(Y =1[S=s,R=w)" [34]. In other words, the test fairness definition
states that for any predicted probability score S, people in both protected and unprotected groups

must have equal probability of correctly belonging to the positive class [145].

Definition 8 (Counterfactual Fairness). “Predictor Y is counterfactually fair if under any context
X =x and A=a, P(Ype(U)=y|X =x,A=a)=P(Y 4 (U)=y|X =x,A=a), (for all y and for any value a’ at-
tainable by A” [87]. The counterfactual fairness definition is based on the “intuition that a decision
is fair towards an individual if it is the same in both the actual world and a counterfactual world
where the individual belonged to a different demographic group.”

Definition 9 (Fairness in Relational Domains). “A notion of fairness that is able to capture the

| structure in a d t only by taking attributes of individuals into consideration
but by taking into account the social, or 1, and other ¢ ions between individuals”
[50].
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1 bias puo essere mitigato..
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Come possiamo migliorare questa situazione?

Guidando 'utente nella
selezione didefinizioni,
metriche e metodi appropriatiin
base al contesto




MANILA in soBigData RI

File Extension

O csv Parquet Excel JSON

Label

O Binary MultiClass
Label Name *

Sensitive Variables
Single Sensitive Variable

Variable Name Unprivileged value

Multiple Sensitive Variables

Variable Names

Dataset has an index column

Index Column

Privileged value

MANILA

Select the features that comprise your experiment

Dataset

Positive Value *

Unprivileged values

Privileged values
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