
UNIVERSITÀ DEGLI STUDI DELL’AQUILA
DEPARTMENT OF INFORMATION ENGINEERING AND COMPUTER SCIENCE AND

MATHEMATICS

DOCTORAL THESIS

Engineering Fair and Efficient
Learning-Based Software Systems

Candidate:
Giordano D’ALOISIO

Advisor:
Prof. Antinisca DI MARCO

Co-Advisors:
Prof. Giovanni STILO

Prof. Davide DI RUSCIO

Doctoral Program Coordinator:
Prof. Davide DI RUSCIO

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy in

Information and Communication Technology
Curriculum: Emerging computing models, software architectures, and

intelligent systems

XXXVII Cycle

SSD INF/01

A.Y. 2023/2024

i

Abstract

Giordano D’ALOISIO

Engineering Fair and Efficient Learning-Based Software Systems

Learning-based systems – i.e., systems including machine learning (ML) models –
are now employed in all aspects of our lives. The wide adoption of these systems has
raised several concerns about their quality, as highlighted by the United Nations Sus-
tainability Development Goals and the European Union AI Act. Unlike traditional
software systems, learning-based systems employ an additional set of relevant qual-
ity properties (such as fairness, explainability, and privacy) that must be addressed.
In this thesis, we focus on two of the most relevant quality properties of these sys-
tems—namely, fairness and efficiency—and propose a set of contributions that span
different phases of a general learning-based systems development workflow.

Concerning the fairness quality property, we first address a significant lack of
fairness-enhancing methods by proposing a novel pre-processing algorithm to im-
prove fairness in both binary and multi-class classification settings. Next, we for-
mally model the workflows for fairness assessment and select the best combina-
tion of ML model and fairness-enhancing method. We propose two low-code ap-
proaches leveraging these formal models to support data scientists in developing
fair learning-based systems. Additionally, motivated by the desire to further support
data scientists in the early identification of variables leading to high bias in a system,
we performed an extensive empirical evaluation of the ability of dataset structural
features—termed bias symptoms—to detect algorithmic bias early, before training a
model. Finally, we begin to investigate bias issues of learning-based systems em-
ploying Large Language Models (LLMs) and how the fairness of these systems is
currently assessed in GitHub projects.

Concerning the efficiency of learning-based systems, we first investigate the abil-
ity of existing approaches to estimate the training time of ML models early. This
investigation is motivated by the need to assist data scientists in the early selection
of ML models that meet a given training time constraint. Next, we examine the ef-
ficiency of LLMs regarding inference time and memory size. First, we conduct a
thorough empirical investigation of the impact of LLM compression strategies on
the efficiency and effectiveness of models fine-tuned for software engineering tasks.
From this investigation, we derive a set of recommendations for practitioners and
researchers to guide them in selecting the best compression strategy for a given task.
Finally, we propose a novel search-based approach that identifies the optimal hyper-
parameter setting and prompt structure to reduce the inference time of text-to-image
generation models while maintaining high quality in the generated images.

With this thesis, we aim to support data scientists and practitioners in developing
fair and efficient learning-based systems and to help standardize some phases of the
development workflow.

ii

Acknowledgements

This dissertation would not have been possible without the support of all the people
who shared this journey with me.

First and foremost, I would like to express my gratitude to my PhD advisor,
Prof. Antinisca Di Marco. She gave me so much advice that helped me grow both
scientifically and personally. It is also thanks to her that I am the person I am today.

I would also like to thank my PhD co-advisors, Prof. Giovanni Stilo and Prof.
Davide Di Ruscio, for all the support they gave me and for all the opportunities they
introduced me to.

Another thanks goes to Prof. Federica Sarro and all the members of the SOLAR
and CREST research groups for welcoming me as a research visitor at UCL. I felt
extremely honored to be part of these prestigious groups, and I am happy to have
established a successful research collaboration.

I have been extremely lucky to be surrounded by many colleagues that, at the
end of this journey, I can consider close friends.

First, I would like to thank my long-time friend Claudio for all the good times
we spent together and for all the help he has given me over the years. I wish him
the best in his career and his life.

Other big thanks go to my office mates (along with temporary additions) Mashal,
Andrea D., Gennaro, Alina, Andrea M., Katiuscia, Diletta, and Alfonso. Some of
them have been with me for a longer time, while others shared a smaller part of this
journey with me, but all significantly contributed in some way. Thank you all for the
moments we shared together. You made this journey much brighter.

I want to extend my thanks to all the other friends I did not mention before but
who shared this path with me. Federico, Luca, Riccardo, Roberta, Gianluca, Andrea
B., and Isabella are just a few. The list would be extremely long, but all of you (even
the ones I did not explicitly mention – sorry!) will forever have my gratitude.

Finally, I want to express my gratitude to my family, who have always supported
and trusted me in every decision I made.

iii

Contents

Abstract i

Acknowledgements ii

1 Introduction 1
1.1 Thesis Contributions . 2

1.1.1 Identified Challenges . 2
1.1.2 Contributions . 5

1.2 List of Publications . 9
1.3 Thesis Outline . 12

I Fairness of Learning-Based Systems 14

2 Background Knowledge 15
2.1 Fairness Assessment: Key Concepts and a General Workflow 15

2.1.1 Bias Definition . 17
2.1.2 Fairness Analysis and Metrics . 17
2.1.3 Fairness Evaluation . 19

2.2 Bias Mitigation: Key Concepts and a General Workflow 20
2.2.1 Background on Fairness-Enhancing Methods 20
2.2.2 Workflow for Benchmarking Fairness-Enhancing Methods . . . 21

2.3 Conclusion . 23

3 Related Work on Fairness 25
3.1 Review of Existing Approaches for Fairness Assessment 25

3.1.1 Methodology . 25
3.1.2 Elicited features . 27
3.1.3 Selected approaches . 28

3.2 Review of Existing Approaches for Early Bias Detection 31
3.3 Related Work on Bias in Text-to-Image Generation Models 32
3.4 Related Studies on Model Repositories 33

4 Improving Fairness in Binary and Multi-Class Classification 34
4.1 Research Questions . 34
4.2 Debiaser for Multiple Variables (DEMV) 36

4.2.1 Sensitive Groups Identification 37
4.2.2 Balancing Strategies . 40

4.3 Evaluation . 41
4.3.1 Experimental setting . 41
4.3.2 Employed datasets . 44
4.3.3 Selection of the best generative strategy 46
4.3.4 DEMV evaluation in classification tasks 47

iv

Comparison in the binary classification task 48
Comparison in the multi-class classification task 50
Comparison using more sophisticated classifiers 52

4.3.5 Reproducibility of the experiments 55
4.4 Discussion . 57

4.4.1 RQ1: Evaluation of existing approaches 57
4.4.2 RQ2: Overcoming existing limitations 58
4.4.3 RQ3: DEMV instance generation strategy 58
4.4.4 RQ4: Comparison with baseline approaches 59

4.5 Conclusion . 59

5 Modelling Fairness Concepts and Metrics 61
5.1 Background on Software Modeling . 61

5.1.1 Model Driven Engineering . 61
5.1.2 Feature Oriented Software Development 62

5.2 An Extended Feature Model to Support the Development of Fair and
Effective Learning-Based Systems . 63

5.3 A Metamodel for Fairness Assessment 65
5.3.1 Bias Definition . 66
5.3.2 Fairness Analysis . 67
5.3.3 Metric Definition . 68

5.4 Conclusion . 69

6 Low-Code Approaches for Software Fairness 70
6.1 MANILA . 70

6.1.1 Web Application . 71
Feature Selection . 72
Experiment Generation and Execution 74

6.1.2 Evaluation . 77
RQ1: Expressiveness Evaluation 80
RQ2: Correctness Evaluation . 80

6.1.3 Threats to Validity . 81
6.1.4 Limitations . 81

6.2 MODNESS . 82
6.2.1 Domain Specific Language . 84

Bias Definition . 84
Fairness Analysis . 85
Metric Definition . 88

6.2.2 Code generation and fairness assessment 89
6.2.3 Evaluation . 93

Examined use cases . 93
RQ1: State of the Art . 94
RQ2: Use Case Coverage . 96
RQ3: Baselines Comparison . 99

6.2.4 Threats to Validity . 101
6.3 Conclusion . 102

7 Towards Early Detection of Algorithmic Bias from Dataset Bias Symptoms103
7.1 Research Questions . 104
7.2 Methodology . 105

7.2.1 Selected fairness metrics and relative thresholds 105

v

7.2.2 Symptoms identification . 105
7.2.3 Dataset Creation . 107
7.2.4 Bias symptoms dataset description 109

7.3 Evaluation . 111
7.3.1 Experimental Settings . 111

RQ1: Correlation Analysis . 111
RQ2: Early Bias Detection . 111
RQ3: Feature Importance . 112
RQ4: Relation with Base Classifier 112

7.3.2 Metrics . 112
7.3.3 Statistical Tests . 113

7.4 Results . 113
7.4.1 RQ1: Correlation Analysis . 113

Correlations between bias symptoms 113
Correlation between symptoms and fairness metrics 115
Correlation between fairness metrics 115

7.4.2 RQ2: Early Bias Detection . 115
Statistical Parity . 116
Equal Opportunity . 116
Average Odds . 116

7.4.3 RQ3: Feature Importance . 117
Statistical Parity . 118
Equal Opportunity . 118
Average Odds . 118

7.4.4 RQ4: Relation with Base Classifier 119
Multi Linear Perceptron . 119
Random Forest . 119

7.5 Discussion . 120
7.6 Threats to Validity . 121
7.7 Conclusion . 121

8 Preliminary Insights on Bias and Fairness of LLMs 123
8.1 Assessing the Bias Exposed by Generative Models Towards Software

Engineering Tasks . 123
8.1.1 Background on Stable Diffusion Models 124
8.1.2 Empirical Study Design . 124
8.1.3 Data Collection . 125
8.1.4 Data Labeling . 125

Gender Labeling . 126
Ethnicity Labeling . 126

8.1.5 Bias Assessment . 127
Gender Bias . 128
Ethnicity Bias . 128

8.1.6 Empirical Study Results . 128
8.1.7 RQ1: Gender Bias . 128
8.1.8 RQ2: Ethnicity Bias . 130
8.1.9 RQ3: Task-related Bias . 131

Gender Bias . 131
Ethnicity Bias . 132

8.1.10 Discussion . 132
8.1.11 Recommendations for Practitioners 132

vi

8.1.12 Recommendations for Researchers 133
8.1.13 Threats to Validity . 133

8.2 Investigating the coupled usage of classification pre-trained models
and fairness assessment libraries . 134
8.2.1 Background on Hugging Face model repository 134
8.2.2 Methodology . 135
8.2.3 Data collection and curation . 136
8.2.4 Github mapping . 137
8.2.5 Fairness filtering . 137
8.2.6 Usage analysis . 137
8.2.7 Preliminary results . 138

RQ1: Which classification PTMs are adopted in the GitHub
ecosystem? . 138

RQ2: To what extent are classification PTMs coupled with fair-
ness assessment libraries? 139

8.2.8 Threats to validity . 140
8.3 Conclusion . 140

II Efficiency of Learning-Based Systems 141

9 Background and Related Work on Efficiency on LBS 142
9.1 Review of Existing Approaches to Estimate the Training Time of Tra-

ditional Machine Learning Models . 142
9.1.1 Methodology . 142
9.1.2 Selected Works . 143

9.2 LLMs Efficiency . 145
9.2.1 Compression Strategies for Large Language Models 145
9.2.2 Review of Approaches to Improve Efficiency and Effectiveness

of Text-To-Image Generation Models 146

10 Towards Predicting the Training Time of ML Models 148
10.1 FPTC Approach . 148
10.2 Experimental Setting . 149

10.2.1 Slope Computation . 149
10.2.2 Training Time Prediction . 151

10.3 Experimental Results and Discussion . 153
10.3.1 RQ1: Slope Computation . 153
10.3.2 RQ2: Prediction Effectiveness . 154

10.4 Threats to Validity . 158
10.5 Conclusion . 158

11 Analyzing and Improving the Efficiency of LLMs 159
11.1 Analysing the Effectiveness of Compression Strategies for Language

Models of Code . 159
11.1.1 Empirical Study Design . 160

Software Engineering Tasks . 162
Compression Strategies . 163
Efficiency Metrics . 164
Effectiveness Metrics. 164

11.1.2 Empirical Study Results . 165

vii

RQ1 Results - Vulnerability Detection 167
RQ2 Results - Code Summarization 169
RQ3 Results - Code Search . 171

11.1.3 Discussion . 172
Performance of LLM Compression Strategies 172
Insights . 173

11.1.4 Threats to Validity . 174
11.2 Improving Inference Time and Image Quality of Image Generation

Models . 174
11.2.1 Methodology . 175

NSGA-II Optimization Algorithm 175
Selected Parameters . 176

11.2.2 Evaluation . 176
Experimental Setup . 176
RQ1 Results . 176
Results of RQ2 and RQ3 . 177

11.2.3 Threats to Validity . 178
11.3 Conclusion . 179

III Conclusion 180

12 Conclusion 181
12.1 Future Work . 182

A Additional DEMV Evaluations 184
A.1 Detailed results of generative strategies’ comparison 184
A.2 Detailed results for binary classification 184
A.3 Detailed results for multi-class classification 188
A.4 ANOVA tables . 189

Bibliography 197

viii

List of Figures

1.1 Thesis contributions in the context of a general workflow for the de-
velopment of learning-based systems (adapted from [4]). 3

2.1 General fairness assessment workflow. On top, there are the main
actors involved in each step, while on the bottom, there is the instan-
tiation of the key concepts for the Univerisity use case. 16

2.2 Execution of the Fairness-Enhancing Methods Benchmarking Process . 23

3.1 Number of selected papers per year. 27

4.1 Application of DEMV . 35
4.2 Example execution of the first steps of DEMV algorithm 39
4.3 Evaluation procedure of DEMV for each train-test fold 44
4.4 Comparison of generation strategies of DEMV for multi-class classifi-

cation with two sensitive variables . 47
4.5 Comparison of generation strategies of DEMV for binary classification 47
4.6 Execution time in seconds of DEMV Uniform and DEMV Adasyn in

multi-class classifications tasks . 48
4.7 Comparison of overall H-Mean at different number of sensitive vari-

ables for binary classification datasets 49
4.8 Comparison of DEMV with the baselines in multi-class classification . 50
4.9 Comparison of overall H-Mean at different number of sensitive vari-

ables for multi-class classification datasets 51
4.10 Normalized confusion matrices of privileged and unprivileged groups

for each baseline on Drug dataset . 53
4.11 Comparison of DEMV with the baselines in multi-class classification

using other classifiers . 55

5.1 Short version of the implemented Extended Feature Model 64
5.2 Bias Definition. 67
5.3 Fairness Analysis. 67
5.4 Metric Definition. 68

6.1 MANILA high-level overview . 71
6.2 MANILA Web Form . 72
6.3 Example of web form cross-tree constraints 73
6.4 Fairness metric selection . 74
6.5 File upload field and execution buttons 74
6.6 Example of benchmarking process . 75
6.7 Experiment execution on the server . 77
6.8 MANILA result page . 78
6.9 Aggregated H-Means of the original experiments and MANILA’s ones 81
6.10 MODNESS high-level view. 82

ix

7.1 Mean and 95% confidence interval of Kendall τ between binary vari-
ables and ground truth labels grouped by High and Low SP, EO and
AO values. For each metric, we report the Welch’s t-test p-value. . . . 107

7.2 Mean and 95% confidence interval of Mutual Information between
binary variables and ground truth labels grouped by high and low
SP, EO, and AO values. For each metric, we report the Welch’s t-test
p-value. 108

7.3 Dataset creation workflow . 109
7.4 Median and inter-quartile range of SP, EO, and AO values in the Symp-

toms’ Bias Dataset . 110
7.5 Distribution of Privileged Group Unbalance between items with high

and low values of SP and EO . 110
7.6 Percentage of items with high and low values of SP, EO, and AO 111
7.7 RQ2-RQ4 Experimental Workflow . 112
7.8 Distribution and relationship between Skewness and Gini symptoms . 114
7.9 RQ3: Feature importance results . 117

8.1 RQ1: Percentage of male and female images by SD version and prompt
style . 129

8.2 RQ2: Percentage of ethnicity images by SD version and prompt style . 130
8.3 PTMs and their categories . 135
8.4 Overview of the proposed approach . 136
8.5 Statistics for the mapped GitHub projects. 139

10.1 Slope variation with an increasing number of dataset’s features 153
10.2 RMSE and MAPE at different slope values for LogReg 155
10.3 RMSE and MAPE at different slope values for Random Forest 156
10.4 Spearman correlation coefficient between FPTC parameters and MAPE

for LogReg and RF . 157

11.1 Experimental Methodology . 161
11.2 Trade-off between effectiveness (y-axis) and efficiency (x-axis) metrics

for each of the SE tasks. 167
11.3 Comparison of GreenStableYolo and StableYolo on 15 independent runs177
11.4 Parameters and prompts importance based on the mean decrease in

impurity . 178

A.1 Comparison of DEMV with the baselines in binary classification 186
A.2 Comparison of DEMV with the baselines in binary classification using

other classifiers . 188

x

List of Tables

3.1 Number of papers for the related topics. 26
3.2 Comparison of the existing fairness toolkit and approaches. 28

4.1 Description of the performed experiments 42
4.2 Descriptive statistics for the employed Datasets (boldface are high-

lighted the protected variables established in the original dataset) . . . 46
4.3 Overall H-Mean of all methods with different sensitive variables in

the binary classification context . 49
4.4 Overall H-Mean of all methods with different sensitive variables in

the multi-class classification context . 52
4.5 Overall H-Mean of all methods with different classifiers in the binary

classification context . 54
4.6 Overall H-Mean of all methods with different classifiers in the multi-

class classification context . 56

5.1 Extended Feature Model cross-tree constraints 66

6.1 Replicated experiments . 79
6.2 p-values of the Kruskal-Wallis H test for each experiment 80
6.3 The examined use cases. Use cases adopted as running examples in

the paper are highlighted in bold. 94
6.4 MODNESS implementation of the use cases. Use cases adopted as

examples throughout the paper are highlighted in bold. 96
6.5 Baseline comparison. For each baseline, we evaluate the expressive-

ness and automation scores based on the features they provide. 100
6.6 List of implemented use cases and assessment result. 101

7.1 Bias Symptoms Overview . 106
7.2 List of adopted datasets . 108
7.3 Adopted metrics . 113
7.4 RQ1: Correlation between symptoms and raw bias metrics 114
7.5 RQ2: Mean, standard deviation and Kruskal-Wallis H-test p-value of

effectiveness metrics for MLP, RF and XGBoost in predicting high and
low values of each bias metric . 116

7.6 RQ4: Mean, standard deviation and Kruskal-Wallis H-test p-value of
effectiveness metrics for MLP, RF and XGBoost in predicting high and
low values of each bias metric from different base classifiers 119

8.1 Blip effectiveness for gender classification 127
8.2 Blip effectiveness for ethnicity classification 127
8.3 RQ1: Gender bias by stable diffusion version and prompt style 129
8.4 RQ2: Ethnicity bias by stable diffusion version and prompt style 130
8.5 RQ3: Gender and ethnicity bias in images generated for each task us-

ing a specific SD version and prompt style 131

xi

8.6 Fairness-related repositories analysis 140

10.1 Values of FPTC parameters for each dataset 152
10.2 Mean and standard deviation of training time and FPTC for LogReg

model . 156
10.3 Mean and stand. dev. of training time and FPTC for RF model 157

11.1 Evaluation Metrics . 162
11.2 datasets and lm hyper-parameters for each task 163
11.3 RQs 1-3: Efficiency and effectiveness of original and compressed code

models for each of the SE tasks. 166

A.1 Evaluation results of generative strategies for binary datasets 184
A.2 Evaluation results of generative strategies for multi-class datasets . . . 185
A.3 Evaluation results for all binary datasets and methods with one sen-

sitive variables . 185
A.4 Evaluation results for all binary datasets and methods with two sen-

sitive variables . 187
A.5 Evaluation results for all binary datasets and methods with three sen-

sitive variables . 187
A.6 Evaluation results for binary datasets using Gradient Boostring classifier187
A.7 Evaluation results for binary datasets using Support Vector Machines

classifier . 189
A.8 Evaluation results for binary datasets using Neural Network classifier 189
A.9 Evaluation results for all multi-class datasets and methods using one

sensitive variables . 190
A.10 Evaluation results for all multi-class datasets and methods using two

sensitive variables . 191
A.11 Evaluation results for all multi-class datasets and methods using three

sensitive variables . 191
A.12 Evaluation results for multi-class datasets using Gradient Boosting

classifier . 192
A.13 Evaluation results for multi-class datasets using Support Vector Ma-

chines classifier . 192
A.14 Evaluation results for multi-class datasets using Neural Network clas-

sifier . 192
A.15 ANOVA tables for binary datasets . 193
A.16 ANOVA tables for multi-class datasets 194
A.17 ANOVA tables of binary experiments with other classifiers 195
A.18 ANOVA tables of multi-class experiments with other classifiers 196

xii

List of Algorithms

1 Fairness-Enhancing Methods Benchmarking Process 22

2 Pseudo-code of DEMV . 37
3 Pseudo-code of BALANCE . 40

4 Slope computation . 150
5 Training time prediction . 151

xiii

Ai miei genitori e ai miei nonni

1

Chapter 1

Introduction

LEARNING-based software systems - i.e., systems that embed machine learning
(ML) models - are nowadays employed in all application domains and affect

our real life. If we consider the impact that those applications have in our lives, it
is clear how ensuring that those systems are of high quality is of paramount impor-
tance. However, the specific nature of those systems introduce new quality proper-
ties (like fairness, explainability, or privacy) that are not common to traditional soft-
ware systems [1]–[3].

The quality-based development of learning-based systems is a challenging task,
given its data-centered and empirical nature [4], [5]. For this reason, different works
have been proposed in recent years to formalize and address this topic. At the same
time, many quality properties, metrics, and definitions can now be extracted from
the literature [6]–[12]. However, the quality-based development of learning-based
systems still presents different open research challenges. This research gap is even
amplified by the introduction of Large Language Models (LLMs), which are even
more affected by quality constraints like efficiency or fairness [13].

This thesis aims to address some of the open challenges that affect the quality-
based development of learning-based systems. In particular, we focus on two rele-
vant quality properties of those systems, namely fairness and efficiency. The choice
of these properties is driven by their relevance, as highlighted by previous literature
[2], [14]–[17], as well as by some of the 17 Sustainable Development Goals (SDG)
proposed by the United Nations. In primis SDG 5 (Gender Equality), SDG 10 (Re-
duced Inequalities), SDG 12 (Responsible Consumption and Production), and SDG
13 (Climate Action) [18]. In addition, the recently introduced AI Act from the Euro-
pean Commission explicitly states that developers of high-risk systems (i.e., learning-
based systems employed in sensitive domains like healthcare, education, or bank-
ing) must clearly describe their possible risks and mitigate them during the whole
development process.1

Fairness is a property specifically introduced for learning-based systems [2]. It
is defined as the absence of prejudice or discrimination of a system toward indi-
viduals or groups characterized by a set of legally protected sensitive attributes (e.g.,
their ethnicity, gender, or religion) [19]. If not adequately addressed, the inequalities
reinforced by an unfair (or biased) learning-based systems can lead to severe soci-
etal consequences or reinforce existing discrimination [20]. For instance, we have
highlighted in a previous study how historical data about academic promotions in
the Italian Software Engineering (SE) and Informatics communities show a gender
discrimination in the promotions from assistant to associate professor and from as-
sociate to full professor [21], [22]. Thus, a learning-based system trained on those
data may reinforce this bias if not appropriately treated.

1https://artificialintelligenceact.eu/

https://artificialintelligenceact.eu/

Chapter 1. Introduction 2

By efficiency, we mean the amount of resources, like memory or time, required
by a learning-based system for its operation [23]–[25]. This property is also con-
sidered in traditional software systems and affects the system’s usability and per-
formance [26]. However, it has regained considerable relevance in recent years in
the context of green and sustainable SE [17]. Previous works have highlighted how
the development and deployment process of learning-based systems is significantly
resource-consuming [17], [23]–[25]. Hence, reducing the amount of resources re-
quired by those systems for their operations is essential to limit their environmental
impact. The relevance of this property is even increased with the introduction of
LLMs, which are extremely resource intensive [16], [17].

In the following, we describe in detail the contributions of this thesis in terms of
identified challenges and how those have been addressed. In more detail, Section
1.1 presents the contributions of this thesis in the context of a general workflow to
develop learning-based systems. Section 1.2 describes the list of publications on
which this thesis is grounded. Finally, Section 1.3 presents the thesis’s roadmap.

1.1 Thesis Contributions

Figure 1.1 exploits the thesis contributions (CN) in the context of a general workflow
for the development of learning-based systems. Each contribution addresses a spe-
cific challenge (CH) through a given result. The presented workflow has been adapted
from the previous work of Amershi et al. [4] and comprises several phases that are
strictly connected. In addition, some phases can loop back to previous steps (as high-
lighted by the large arrows on top of the workflow). The first step in the workflow
is model requirement, where the stakeholders define the functionalities that have to be
implemented and the possible use cases of the system. In addition, a first selection
of the possible ML models to include in the learning-based system is performed at
this stage. The next four steps are related to the data collection and engineering. Based
on the functionalities and use cases identified during the requirement phase, data are
collected, cleaned, and labeled. Next, the data are further pre-processed during the
feature engineering step to identify additional features useful for the later phases and
remove additional noise. After the data are correctly engineered, they are used to
train and evaluate the ML models selected during the requirement phase. The ML
models are evaluated using a set of metrics selected during the requirement based
on the use cases and functionalities that have to be performed. Note how the model
evaluation phase may loop back to previous phases of the workflow to improve the
overall quality of the system. When the evaluation phase provides satisfactory re-
sults, the system is deployed on the target platform and continuously monitored.
The model monitoring phase may loop back to previous steps of the pipeline to ad-
dress potential degradation in the system’s quality. In the following, we describe the
identified challenges. Finally, we present the thesis contributions and explain where
each contribution could be placed in the context of a general learning-based system
development pipeline.

In the following, we first present the identified challenges in Section 1.1.1. Next,
we detail the contributions proposed to address each of them in Section 1.1.2.

1.1.1 Identified Challenges

Even though different works have been proposed in the context of improving the
fairness and efficiency of learning-based systems, several challenges are still open.

Chapter 1. Introduction 3

In
cl

ud
e

M
od

el
R

eq
ui

re
m

en
ts

D
at

a
C

ol
le

ct
io

n
D

at
a

C
le

an
in

g
D

at
a

La
be

llin
g

Fe
at

ur
e

En
gi

ne
er

in
g

M
od

el
Tr

ai
ni

ng
M

od
el

Ev
al

ua
tio

n
M

od
el

D
ep

lo
ym

en
t

M
od

el
M

on
ito

rin
g

Result

M
O

D
N

ES
S

M
AN

IL
A

FP
TC

 E
m

pi
ric

al
St

ud
y

St
ab

e
D

iff
us

io
n

Bi
as

 E
m

pi
ric

al
St

ud
y

G
re

en
St

ab
le

Yo
lo

LL
M

C
om

pr
es

si
on

Em
pi

ric
al

 S
tu

dy

H
ug

gi
ng

Fa
ce

Fa
irn

es
s

Em
pi

ric
al

 S
tu

dy

M
O

D
N

ES
S

M
AN

IL
A

M
AN

IL
A

Bi
as

 S
ym

pt
om

s
Em

pi
ric

al
 S

tu
dy

D
EM

V

Challenge

C
H

2
C

H
4

C
H

5
C

H
6

C
H

5
C

H
2

C
H

2
C

H
3

C
H

1

Contribution

C
N

2
C

N
4

C
N

5
C

N
7

C
N

6
C

N
2

C
N

2
C

N
3

C
N

1

Ad
dr

es
s

Ad
dr

es
s

Ad
dr

es
s

Ad
dr

es
s

Ad
dr

es
s

Ad
dr

es
s

Ad
dr

es
s

Ad
dr

es
s

Th
ro

ug
h

Th
ro

ug
h

Th
ro

ug
h

Th
ro

ug
h

Th
ro

ug
h

Th
ro

ug
h

Th
ro

ug
h

Th
ro

ug
h

Ad
dr

es
s

Th
ro

ug
h

In
cl

ud
e

In
cl

ud
e

In
cl

ud
e

In
cl

ud
e

In
cl

ud
e

FI
G

U
R

E
1.

1:
Th

es
is

co
nt

ri
bu

ti
on

s
in

th
e

co
nt

ex
to

fa
ge

ne
ra

lw
or

kfl
ow

fo
r

th
e

de
ve

lo
pm

en
to

fl
ea

rn
in

g-
ba

se
d

sy
st

em
s

(a
da

pt
ed

fr
om

[4
])

.

Chapter 1. Introduction 4

In the following, we describe the challenges that have been identified and addressed
in this thesis:

CH1 Developing approaches for bias mitigation both in binary and multi-class classification
settings.

This challenge arises from the observation that most tools and libraries for bias
mitigation, such as the widely used aif360 [27] and Fairlearn [28], are pri-
marily designed for binary classification settings — i.e., where the possible
predictions of the ML model are limited to two outcomes. However, numer-
ous studies describe learning-based systems that perform multi-class classifi-
cation tasks — i.e., where the ML model can provide more than two possible
predictions — in sensitive areas like healthcare [29] and education [30]. Ensuring
fairness in learning-based systems employed in these contexts is essential.

CH2 Democratizing the development of fair learning-based systems to actors with different
expertise.

This challenge arises from analyzing traditional workflows used for assessing
and improving the fairness of learning-based systems [19], [27], [28], [31]. Dif-
ferent stakeholders with varying areas of expertise are typically needed to de-
fine, measure, and address the bias these systems expose. However, most exist-
ing methods for measuring and mitigating bias require a deep understanding
of bias and fairness concepts, as well as strong technical skills. This complexity
makes integrating these methods into traditional workflows challenging since
many actors may lack the necessary knowledge to use these tools effectively
[32], [33]. Therefore, there is a need for approaches that can formalize and
democratize the development of fair learning-based systems.

CH3 Investigating approaches for bias detection in early stages of a learning-based system
development process.

Many approaches have been proposed to promote automatic bias assessment
[34]–[36]. However, all these techniques assess bias starting from the predic-
tions of the ML model embedded in the learning-based system. Hence, they
can only be performed after a model has been trained or deployed, which are
late steps of a learning-based system development pipeline [4]. However, de-
tecting early signals of bias in earlier phases of the development pipeline could
help in tasks such as early identifying sensitive attributes (i.e., attributes that
may lead to discrimination) or early bias mitigation [37].

CH4 Predicting a priori the training time of machine learning models could support early
design decisions for learning-based systems development.

Selecting the proper ML model to employ in a learning-based system is always
a challenging task and difficult to engineer. The effectiveness of a particular
ML model often depends on the data used and the specific use case [4], [5].
One important factor that can help stakeholders narrow down their options
is the training time required for each model, particularly when computational
resources are limited. Therefore, having an estimate of the training time in
advance can help streamline certain phases of the learning-based system de-
velopment process.

CH5 Highlighting the bias and the fairness assessment of learning-based systems embed-
ding Large Language Models.

Chapter 1. Introduction 5

After the release of ChatGPT in November 2022, Large Language Models (LLMs)
have been employed in more and more aspects of our lives. Those models are
generally pre-trained on a large set of heterogeneous data and then fine-tuned
on an additional set of data for specific tasks [38]. However, being trained
on a large set of data, these models are more subject to learning and expose
possible bias. Moreover, their pre-trained nature makes the bias assessment
and mitigation process more challenging. However, comprehensive analyses
investigating the bias issues and the fairness assessment process of learning-
based systems embedding LLMs are still missing.

CH6 Analyzing and improving the efficiency-effectiveness trade-off of resource-intensive
Large Language Models.

Transformer-based Large Language Models (LLMs) are effectively employed
in numerous tasks nowadays. However, despite their impressive capabili-
ties, the widespread adoption of these models is often hindered by practical
challenges, particularly their high computational cost [39]. The deployment
of LLMs typically requires computations across millions or even billions of
learned parameters, resulting in significant memory demands and high in-
ference time. To address this issue, AI researchers have developed various
strategies over the past decade to reduce the size and computational cost of
LLMs [40]–[42]. These strategies can reduce the memory demand of LLMs
and/or speed up their inference times. However, their side effects concerning
the LLMs’ effectiveness (i.e., prediction correctness) are still not fully explored
and addressed.

1.1.2 Contributions

Rounded blue boxes in Figure 1.1 represent individual contributions (CN), while the
grey boxes indicate the challenges that each contribution addresses (CH). The orange
boxes highlight the tools or studies used to tackle those challenges. It is important
to note that some challenges are addressed by multiple contributions.

CN1 A novel approach for fairness improvement in binary and multi-class classification
tasks [43], [44].

To tackle CH1, we propose the Debiaser for Multiple Variables (DEMV). DEMV is
an algorithm that can improve the fairness of a learning-based system in both
binary and multi-class classification contexts by balancing the distribution of
sensitive groups in the dataset [43], [44]. By working directly on the dataset,
DEMV is model-agnostic, meaning that it can be applied to any classification
method without influencing its behavior. This contribution can be applied to
the feature engineering phase of the pipeline depicted in Figure 1.1 when the
dataset is further pre-processed before training an ML model. DEMV is avail-
able as a package in the PyPi Python repository2 and as a method in the SoBig-
Data RI [45]. This contribution is described in depth in Chapter 4.

CN2 Conceptualization and development of low-code frameworks to support the develop-
ment of fair and effective learning-based systems [46], [47].

To address CH2, we formalized the pipelines to assess and improve the fair-
ness of a learning-based system. From the engineering of those pipelines, we

2https://pypi.org/project/demv/

https://pypi.org/project/demv/

Chapter 1. Introduction 6

derive two low-code applications. The first tool is MANILA, a low-code appli-
cation to benchmark the effectiveness (i.e., prediction correctness) and fairness
of different ML models and fairness-enhancing methods combinations [46].
It is based on the Extended Feature Models (ExtFM) formalism, which mod-
els a generic pipeline for the evaluation of ML models and fairness-enhancing
methods as a Software Product Line (SPL) [48]. MANILA supports data scien-
tists during the model requirements phase by assisting them in selecting the dif-
ferent features required to evaluate ML models and fairness-enhancing meth-
ods. In addition, by automatically training and testing the selected configura-
tions, MANILA supports data scientists during the model training and evalua-
tion phases. MANILA is available as an application in the SoBigData RI [45]3.

The second proposed application is MODNESS, a model-driven framework
to automate the fairness assessment process of learning-based system [47]. It
features a domain-specific language (DSL) that enables stakeholders to specify
their definitions of fairness and related metrics and generates a Python imple-
mentation of the modeled analysis. Like MANILA, MODNESS also supports
domain experts in the specification of high-level bias definitions during the
model requirements phase. In addition, by automatically generating the Python
implementation, MODNESS assists data scientists during the model evaluation
phase. We release the source code of MODNESS publicly [49].

Although they have been developed and presented as different applications,
MANILA and MODNESS are designed to be integrated in the future to guide
data scientists in the development of fair learning-based systems while pro-
viding a high degree of expressiveness in specifying fairness definitions and
metrics.

Chapter 5 describes the modeling formalism behind both approaches, while
Chapter 6 describes their technical implementations and evaluations.

CN3 An extensive empirical analysis on the ability of datasets bias symptoms to early pre-
dict algorithmic fairness.

To tackle CH3, we performed an extensive empirical analysis of the ability of
datasets’ structural features (namely bias symptoms) to perform early detection
and explanation of algorithmic bias, i.e., bias inducted by the ML model. We
extract those symptoms using binary variables from 24 datasets well-known
in the fairness literature. Next, we use them to detect early bias signals in a
dataset. The rationale for analyzing bias symptoms is manifold. First, we aim
to assess to what extent bias symptoms can be employed during the feature en-
gineering phase to detect signals of bias before training an ML model, allowing
the early identification of variables that could lead to high bias. Secondly, bias
symptoms could be employed to explain why a particular variable may lead
to a specific type of bias in a system. The empirical analysis is described in
Chapter 7, and the replication package is publicly available [50].

CN4 An empirical study on the effectiveness of approaches to estimate the training time of
traditional machine learning models [51].

To address CH4, we perform an extensive empirical evaluation of the Full Pa-
rameter Time Complexity (FPTC) approach proposed by Zheng et al. [52]. This
approach is, to the best of our knowledge, the only method so far that for-
mulates the ML training time as a function of the dataset’s and ML model’s

3https://sobigdata.d4science.org/group/sobigdata.it/manila-univaq

https://sobigdata.d4science.org/group/sobigdata.it/manila-univaq

Chapter 1. Introduction 7

parameters. Thus, it could be employed during the model requirements phase
to select ML models that satisfy specific constraints related to their training
time. In addition, it could be integrated into MANILA to further assist data
scientists in selecting ML models that are below a given training time thresh-
old. Those motivations led us to analyze in depth the effectiveness of this ap-
proach. Specifically, we use the FPTC to predict the training time of a Logistic
Regression [53] and Random Forest [54] classifier on a heterogeneous number
of data. Next, we compare the predicted time with the actual training time of
the method and highlight the main strengths and weaknesses of the approach.
This contribution is presented in Chapter 10, and the replication package is
publicly available [55].

CN5 A preliminary empirical analysis on the bias exposed by Image Generation Models
towards Software Engineering tasks.

To tackle CH5 we perform an extensive empirical study of the gender and eth-
nicity bias exposed by three versions of the open source Stable Diffusion (SD)
text-to-image generation model – Stable Diffusion 2 (SD 2) [56], Stable Diffu-
sion XL (SD XL) [57], and Stable Diffusion 3 (SD 3) [58] – towards SE tasks. We
chose Stable Diffusion as a reference model since, due to its open-source na-
ture, it is nowadays the most adopted text-to-image generation model. From
a survey conducted by the Everypixel company, around 80% of all artificially
generated images in 2023 were from systems embedding Stable Diffusion mod-
els [59]. Following previous works [60], [61], we ask each SD version to gener-
ate images for 56 software-related tasks using two different prompt styles: one
style including the “Software Engineer" keyword and one with no role specifica-
tion. We collect a total of 6,720 images and compare the gender and ethnicity bias
exposed by each SD version in generating images with a specific prompt style.
Results show that including the "Software Engineer" keyword significantly in-
creases the bias exposed by those models. Following this evaluation, we pro-
vide recommendations for practitioners and researchers to address and miti-
gate the bias exposed by those deployed models during the model monitoring
phase. The results obtained from this study drive the motivation for further
research toward bias mitigation in image-generation models.

The study is reported in Chapter 8, and the replication package is available at
[62].

CN6 A preliminary study on the coupled usage of pre-trained Large Language Models and
fairness assessment libraries.

Another contribution addressing CH5 is a preliminary study exploring how
publicly trained models (PTMs) stored on Hugging Face (HF) are currently
utilized within the prominent open-source software ecosystem, GitHub. Our
focus is on identifying PTMs that could be integrated with fairness assessment
libraries, which are dedicated tools and frameworks that support fairness as-
sessment during the model evaluation phase. To conduct this analysis, we utilize
the latest HF dump provided by the HF community project [63] and concen-
trate on PTMs that support classification tasks, including those related to text,
tokens, images, and tabular data. We then examine the GitHub platform to
explore how these models are being used, gathering relevant metadata such
as repository content, stars, forks, and the source code found in Python files.
Additionally, we look for key fairness-related terms and the import statements

Chapter 1. Introduction 8

associated with three notable fairness assessment libraries: AIF360 [27], Fair-
learn [28], and Fairkit-learn [64].

From our initial set of PTMs supporting classification tasks, we discovered that
only a small number have been utilized on GitHub. More importantly, none
of these models include references to the three fairness libraries mentioned
above. This finding underscores the need for further research in this area. We
view our study as an initial step toward understanding how PTMs can be inte-
grated into the fairness assessment process, thereby revealing various research
opportunities.

This contribution is described in Chapter 8, and the replication package is pub-
licly available at [65].

CN7 An empirical study on the effectiveness of compression strategies for Large Language
Models of Code.

Finally, CH6 is also addressed by two contributions, which both apply to the
model deployment phase. In the first contribution, we investigate the impact
of different model compression strategies across three SE tasks: vulnerability
detection (code classification), code summarization (code-to-text generation), and
code search (text-to-code recommendation). We fine-tune a well-known large lan-
guage model for code, CodeBERT [66], on each of these tasks. Subsequently,
we assess how three widely-adopted model compression strategies – namely,
knowledge distillation [40], quantization [67], and pruning [68] – affect (i) the
effectiveness of the LLM in performing the task, (ii) inference time, and (iii)
the model’s memory size. Our results provide practitioners and researchers
with guidelines on balancing the trade-offs between effectiveness and effi-
ciency when selecting a model compression strategy.

This contribution is described in Chapter 11, and the replication package of
this experiment is publicly available at [69].

CN8 A novel approach to improve inference time and image quality of Image Generation
Models [70].

The second contribution proposed to address CH6 is GreenStableYolo, a novel
approach that addresses the challenge of optimizing the trade-off between in-
ference time and image quality of Stable Diffusion models [70]. By using a
search-based multi-objective optimization algorithm – i.e., the Non-dominated
Sorting Genetic Algorithm (NSGA-II) [71] – GreenStableYolo finds the best hy-
perparameters and prompt structure able to improve the quality of the gen-
erated images while reducing the time for their generation. We provide ini-
tial empirical evidence that, by using GreenStableYolo, Stable Diffusion (SD)
models achieve a satisfactory equilibrium between inference time and image
quality, making it suitable to be employed during the model monitoring phase
to increase the efficiency of deployed SD models.

The approach and its evaluation are described in Chapter 11. GreenStableYolo
is publicly available at [72].

As mentioned above, DEMV and MANILA have been deployed, respectively, as
a method and application into the SoBigData RI. SoBigData is a European project
that aims to develop and share analyses and tools in the field of Big Data following
the Open Science principle. Its RI is built on top of the D4Science platform [73]
and provides datasets, analyses, methods, and applications on several data science

Chapter 1. Introduction 9

topics. In this perspective, following open-science rules, both approaches may be
reused and integrated with other items provided in the RI for future research [45].
In the future, we plan to include additional contributions presented in this thesis to
this infrastructure.

1.2 List of Publications

All the contributions of this thesis are based on publications submitted to scientific
conferences or journals. The complete list of journal, conference, and workshop pub-
lications is reported below in chronological order.

Journal Papers

J1. d’Aloisio, G., Di Sipio, C., Di Marco, A., & Di Ruscio, D. (2025). Towards Early
Detection of Algorithmic Bias from Dataset’s Bias Symptoms: An Empirical
Study. Information and Software Technology (under review). Preprint: http:
//dx.doi.org/10.2139/ssrn.5143265

This paper presents the empirical study on dataset bias symptoms reported in Chapter
7.

J2. d’ Aloisio, G., Di Sipio, C., Di Marco, A. & Di Ruscio, D. (2025). How fair are
we? From conceptualization to automated assessment of fairness definitions.
International Journal of Software and Systems Modeling. https://doi.org/
10.1007/s10270-025-01277-2

This paper presents the MODNESS tool, which is described in Chapters 5 and 6.

J3. D’Angelo, A., d’Aloisio, G., Marzi, F., Di Marco, A., & Stilo, G. (2024). Un-
covering gender gap in academia: A comprehensive analysis within the soft-
ware engineering community. Journal of Systems and Software, 217, 112162.
https://doi.org/10.1016/j.jss.2024.112162.

This paper describes an empirical analysis of the gender gap in academic promotions
in Italian SE and Informatics communities and is used as a motivating example in
Chapter 1.

J4. d’Aloisio, G., D’Angelo, A., Di Marco, A., & Stilo, G. (2023). Debiaser for mul-
tiple variables to enhance fairness in classification tasks. Information Process-
ing & Management, 60(2), 103226. https://doi.org/10.1016/j.ipm.2022.
103226.

This paper describes the DEMV algorithm presented in Chapter 4.

Conference Papers

C1. d’Aloisio, G. (2025). MANILA: A Low-Code Application to Benchmark Ma-
chine Learning Models and Fairness-Enhancing Methods. International Confer-
ence on the Foundations of Software Engineering (FSE) - Demonstration Track.

This paper describes the technical implementation of the MANILA web-application
presented in Chapter 6.

http://dx.doi.org/10.2139/ssrn.5143265
http://dx.doi.org/10.2139/ssrn.5143265
https://doi.org/10.1007/s10270-025-01277-2
https://doi.org/10.1007/s10270-025-01277-2
https://doi.org/10.1016/j.jss.2024.112162
https://doi.org/10.1016/j.ipm.2022.103226
https://doi.org/10.1016/j.ipm.2022.103226

Chapter 1. Introduction 10

C2. d’Aloisio, G., Traini, L., Sarro, F., & Di Marco, A. (2025). On the compres-
sion of language models for code: An empirical study on CodeBERT. Inter-
national Conference on Software Analysis, Evolution, and Reengineering (SANER
2025). https://doi.org/10.48550/arXiv.2412.13737.

This paper describes the empirical analysis of compression strategies for large language
models of code presented in Chapter 11.

C3. Gong, J., Li, S., d’Aloisio, G., Ding, Z., Ye, Y., Langdon, W. B., & Sarro, F.
(2024). GreenStableYolo: Optimizing inference time and image quality of text-
to-image generation. In International Symposium on Search Based Software En-
gineering. Springer Nature Switzerland Cham, pp. 70–76. SSBSE 2024 Chal-
lenge Track Winner. https://doi.org/10.1007/978-3-031-64573-0_7

This paper presents the GreenStableYolo algorithm described in Chapter 11.

C4. d’Aloisio, G., Di Marco, A., & Stilo, G. (2023). Democratizing quality-based
machine learning development through extended feature models. In L. Lam-
bers & S. Uchitel (Eds.), Fundamental Approaches to Software Engineering - 26th
International Conference, FASE 2023, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2023, Paris, France, April 22-27, 2023,
Proceedings (Vol. 13991, pp. 88–110). Springer. https://doi.org/10.1007/
978-3-031-30826-0_5

This paper presents the extended feature model and the first version of MANILA. It is
referred in Chapters 5 and 6.

C5. d’Aloisio, G. (2022). Quality-driven machine learning-based data science pipeline
realization: A software engineering approach. In 44th IEEE/ACM International
Conference on Software Engineering: Companion Proceedings, ICSE Companion 2022,
Pittsburgh, PA, USA, May 22-24, 2022 (pp. 291–293). ACM/IEEE. https://doi.
org/10.1145/3510454.3517067

This paper presents the idea of quality-based development of learning-based systems,
which is the core topic of this thesis. In addition, it provides the first contributions of
MANILA described in Chapters 5 and 6.

Workshop Papers

W1. Fadahunsi, T., d’Aloisio, G., Di Marco, A., & Sarro, F. (2025). How Do Genera-
tive Models Draw a Software Engineer? A Case Study on Stable Diffusion Bias.
In 1st International Workshop on Fairness in Software Systems, co-located with
IEEE International Conference on Software Analysis, Evolution and Reengineering
(SANER). Best Paper Award. https://doi.org/10.48550/arXiv.2501.09014

This paper presents the empirical study conducted to analyze the bias exposed by Stable
Diffusion models towards SE tasks described in Chapter 8.

W2. d’Aloisio, G., D’Angelo, A., Marzi, F., Di Marco, D., Stilo, G., & Di Marco,
A. (2023). Data-driven analysis of gender fairness in the software engineer-
ing academic landscape. In B. Tekinerdogan, R. Spalazzese, H. Sözer, S. Bon-
fanti, & D. Weyns (Eds.), Software Architecture. ECSA 2023 Tracks, Workshops,
and Doctoral Symposium - Istanbul, Turkey, September 18-22, 2023, Revised Se-
lected Papers (Vol. 14590, pp. 89–103). Springer. https://doi.org/10.1007/
978-3-031-66326-0_6

https://doi.org/10.48550/arXiv.2412.13737
https://doi.org/10.1007/978-3-031-64573-0_7
https://doi.org/10.1007/978-3-031-30826-0_5
https://doi.org/10.1007/978-3-031-30826-0_5
https://doi.org/10.1145/3510454.3517067
https://doi.org/10.1145/3510454.3517067
https://doi.org/10.48550/arXiv.2501.09014
https://doi.org/10.1007/978-3-031-66326-0_6
https://doi.org/10.1007/978-3-031-66326-0_6

Chapter 1. Introduction 11

This paper describes the first results of the empirical analysis of gender bias in academic
promotions used as a motivating example in Chapter 1.

W3. Marzi, F., d’Aloisio, G., Di Marco, A., & Stilo, G. (2023). Towards a prediction of
machine learning training time to support continuous learning systems devel-
opment. In B. Tekinerdogan, R. Spalazzese, H. Sözer, S. Bonfanti, & D. Weyns
(Eds.), Software Architecture. ECSA 2023 Tracks, Workshops, and Doctoral Sympo-
sium - Istanbul, Turkey, September 18-22, 2023, Revised Selected Papers (Vol. 14590,
pp. 169–184). Springer. https://doi.org/10.1007/978-3-031-66326-0_11

This paper describes the empirical study of the FPTC approach presented in Chapter
10.

W4. d’Aloisio, G., Stilo, G., Di Marco, A., & D’Angelo, A. (2022). Enhancing fair-
ness in classification tasks with multiple variables: A data- and model-agnostic
approach. In L. Boratto, S. Faralli, M. Marras, & G. Stilo (Eds.), Advances in
Bias and Fairness in Information Retrieval - Third International Workshop, BIAS
2022, Stavanger, Norway, April 10, 2022, Revised Selected Papers (Vol. 1610, pp.
117–129). Springer. https://doi.org/10.1007/978-3-031-09316-6_11

This paper introduces the first version of the DEMV algorithm described in Chapter 4

Publications not included in this thesis

J1. Di Ludovico, D., Capannolo, C., & d’Aloisio, G. (2023). The toolkit disaster
preparedness for pre-disaster planning. International Journal of Disaster Risk
Reduction, 96, 103889. https://doi.org/10.1016/j.ijdrr.2023.103889.

This paper describes a toolkit of recommendations for pre-disaster planning.

C1. D’Angelo, A., & d’Aloisio, G. (2024). Grammar-based anomaly detection of
microservice systems execution traces. In S. Balsamo, W. J. Knottenbelt, C. L.
Abad, & W. Shang (Eds.), Companion of the 15th ACM/SPEC International Con-
ference on Performance Engineering, ICPE 2024, London, United Kingdom, May
7-11, 2024 (pp. 77–81). ACM. Best ICPE Data Challenge Award. https:
//doi.org/10.1145/3629527.3651844.

This paper presents a grammar-based approach for anomaly detection in microservice
systems execution traces.

C2. Palomba, F., Di Sorbo, A., Di Ruscio, D., Ferrucci, F., Catolino, G., Giordano, G.,
Di Dario, D., Voria, G., Pentangelo, V., Tortorella, M., Sgueglia, A., Di Sipio, C.,
d’Aloisio, G., & Di Marco, A. (2024). FRINGE: Context-aware FaiRness engi-
neerING in complex software systEms. In Proceedings of the 18th ACM/IEEE In-
ternational Symposium on Empirical Software Engineering and Measurement (ESEM
’24) (pp. 608–612). Association for Computing Machinery. https://doi.org/
10.1145/3674805.3695394

This paper presents the FRINGE project, which aims to engineer the development of
fair software systems.

C3. d’Aloisio, G., Fortz, S., Hanna, C., Fortunato, D., Bensoussan, A., Mendiluze
Usandizaga, E., & Sarro, F. (2024). Exploring LLM-driven explanations for
quantum algorithms. In Proceedings of the 18th ACM/IEEE International Sympo-
sium on Empirical Software Engineering and Measurement (pp. 475–481). Associ-
ation for Computing Machinery, New York, NY, USA. https://doi.org/10.
1145/3674805.3690753

https://doi.org/10.1007/978-3-031-66326-0_11
https://doi.org/10.1007/978-3-031-09316-6_11
https://doi.org/10.1016/j.ijdrr.2023.103889
https://doi.org/10.1145/3629527.3651844
https://doi.org/10.1145/3629527.3651844
https://doi.org/10.1145/3674805.3695394
https://doi.org/10.1145/3674805.3695394
https://doi.org/10.1145/3674805.3690753
https://doi.org/10.1145/3674805.3690753

Chapter 1. Introduction 12

This paper describes an empirical study of the ability of LLMs to explain quantum
algorithms.

C4. d’Aloisio, G., et al. (2024). Engineering a digital twin for diagnosis and treat-
ment of multiple sclerosis. In Proceedings of the ACM/IEEE 27th International
Conference on Model Driven Engineering Languages and Systems (MODELS Com-
panion ’24) (pp. 364–369). Association for Computing Machinery, New York,
NY, USA. https://doi.org/10.1145/3652620.3688249

This paper describes the initial architecture of a digital twin for the diagnosis and
treatment of multiple sclerosis.

C5. Bianchi, A., d’Aloisio, G., et al. (2022). DIORAMA: Digital twin for sustainable
territorial management. In M. Anisetti, A. Bonifati, N. Bena, C. A. Ardagna,
& D. Malerba (Eds.), Proceedings of the 1st Italian Conference on Big Data and
Data Science (itaDATA 2022), Milan, Italy, September 20-21, 2022 (Vol. 3340,
pp. 144–155). CEUR-WS.org. Available at: https://ceur-ws.org/Vol-3340/
paper43.pdf

This paper presents the architecture of a digital twin for sustainable territorial man-
agement.

W1. Bianchi, A., d’Aloisio, G., Marzi, F., & Di Marco, A. (2023). A decision tree
to shepherd scientists through data retrievability. In Second Workshop on Repro-
ducibility and Replication of Research Results (RRRR 2023). https://doi.org/10.
48550/ARXIV.2304.05767

This paper presents a decision tree to support scientistic through data retrievability.

W2. Caroccia, F., D’Agostino, D., d’Aloisio, G., Di Marco, A., & Stilo, G. (2021).
SismaDL: An ontology to represent post-disaster regulation. In P. Forbrig, K.
Hinkelmann, M. Kirikova, B. Lantow, C. Møller, A. Morichetta, P. Plebani, B.
Re, K. Sandkuhl, & U. Seigerroth (Eds.), Joint Proceedings of the BIR 2021 Work-
shops and Doctoral Consortium Co-located with 20th International Conference on
Perspectives in Business Informatics Research (BIR 2021), Vienna, Austria, Septem-
ber 22-24, 2021 (Vol. 2991, pp. 99–112). CEUR-WS.org. Available at: https:
//ceur-ws.org/Vol-2991/paper09.pdf

This paper presents an ontology to represent and query post-disaster regulations.

1.3 Thesis Outline

This thesis is divided into three parts:

• Part I provides all the contributions related to Fairness of Learning-Based Sys-
tems. Chapter 2 provides background knowledge on the key concepts related
to fairness and introduces the two general workflows for fairness assessment
and to evaluate fairness-enhancing methods mentioned throughout this the-
sis part. Chapter 3 describes related work to the concepts presented in this
thesis part. Chapter 4 describes the DEMV algorithm. Chapter 5 presents the
formal modeling of the two workflows for fairness assessment and to identify
the best ML model and fairness-enhancing methods. Chapter 6 describes the
two low-code approaches leveraging the formal models. Chapter 7 presents
the empirical study on dataset bias symptoms. Finally, Chapter 8 shows initial
insights into fairness issues about LLMs.

https://doi.org/10.1145/3652620.3688249
https://ceur-ws.org/Vol-3340/paper43.pdf
https://ceur-ws.org/Vol-3340/paper43.pdf
https://doi.org/10.48550/ARXIV.2304.05767
https://doi.org/10.48550/ARXIV.2304.05767
https://ceur-ws.org/Vol-2991/paper09.pdf
https://ceur-ws.org/Vol-2991/paper09.pdf

Chapter 1. Introduction 13

• Part II is devoted to describe the contributions related to the Efficiency of
Learning-Based Systems. Chapter 9 reports work related to the concepts pre-
sented in this thesis part. Chapter 10 describes the initial evaluation of ap-
proaches to early estimate the training time of machine learning models. Fi-
nally, Chapter 11 presents the empirical evaluation of LLM compression meth-
ods and the GreenStableYolo algorithm.

• Part III describes the Conclusions of this thesis and future works.

14

Part I

Fairness of Learning-Based
Systems

15

Chapter 2

Background Knowledge

In this chapter, we recall the main concepts of fairness assessment and mitigation
and describe a general process for those tasks.

When defining bias and conducting fairness analysis, it is important to consider
the specific domain being studied [19], [31]. Thus, we introduce two case studies
that we use throughout this chapter to illustrate the fundamental concepts of the
underlying workflows. These examples are deliberately chosen from significantly
different domains to highlight the heterogeneity of key fairness concepts:

1. University Admission (University). It was originally presented in [74] and in-
volves a university that uses an ML-based system to determine student admis-
sions. It is necessary to ensure that the system is fair. Specifically, the concern
is whether or not the system is biased against women.

2. Popularity Bias in TPL Recommendation (TPL). It concerns the problem of
popularity bias in Third-Party Library (TPL) recommendations [75]. TPL rec-
ommendation concerns the development of recommender systems that can
suggest TPL to developers based on the software they are developing. In the
original paper, authors highlight how very popular libraries (i.e., with high
“reputation") are more likely to be recommended mainly because several de-
velopers are using them. On the contrary, more specific or recent libraries are
less likely to be recommended, even if they are more appropriate to the devel-
opment task at hand.

The rest of this chapter is structured as follows: Section 2.1 highlights key con-
cepts and a general workflow for fairness assessment while Section 2.2 presents the
main concepts and a general workflow to evaluate fairness-enhancing methods. Fi-
nally, Section 2.3 concludes the chapter by motivating the need to formalize and
develop low-code approaches to support the development of fair learning-based
systems.

2.1 Fairness Assessment: Key Concepts and a General Work-
flow

Figure 2.1 illustrates a general fairness assessment workflow, highlighting the main
concepts at each step. Additionally, the top of the figure shows the main actors in-
volved in each step, while the bottom provides an instantiation of the key concepts
for the University use case. The workflow has been derived by analyzing the behav-
ior of some of the most adopted fairness toolkits and libraries (i.e., Aequitas [76],
IBM AIF360 [27], and Fairlearn [28]) and by reviewing foundational papers on bias
and fairness [14], [15], [19]. Recalling the general workflow for the development of

Chapter 2. Background Knowledge 16

 Individual/Group
 Bias Definition

 Fairness Analyses
 Specification

 Analyses
 Implementation

Analysis 1
Implementation

Analysis n
Implementation

...

 Fairness
 Assessment

Analysis 1
assessment

Analysis n
assessment

...

Analysis 1

Scope

Metrics

Dataset

Analysis n

Scope

Metrics

Dataset

...

Sensitive variable(s)

Positive outcome

Privileged Group

Unprivileged Group

U
ni
ve

rs
ity

 u
se

 c
as

e

Group Bias Definition

Sens var:
Gender

Priv Group:
Male

Unpriv. Group:
Female

Positive out:
Admission

Fairness Analysis

Scope: Equal Male-
Female admission

Metric:
Statistical Parity

Dataset:
Gender+Admission

Involved Actors Involved Actors

Data
Scientist

Involved Actors

Domain
Expert

Data
Scientist

Legal Expert (if needed)

Involved Actors

Legal Expert (if needed)

Domain
Expert

Data
ScientistLegal Expert

(if needed)
Domain
Expert

1 2 3 4

FIGURE 2.1: General fairness assessment workflow. On top, there are
the main actors involved in each step, while on the bottom, there is

the instantiation of the key concepts for the Univerisity use case.

learning-based systems, the depicted process usually may span through the model
requirements, model evaluation, and model monitoring phases.

The fairness assessment process may involve multiple parties, with three key
actors typically identified:

• Domain expert provides domain-specific knowledge (in our examples, the
person in charge of managing admissions to the university or the developer
using the recommender system);

• Data scientist provides knowledge about fairness metrics and their implemen-
tation (in our examples, the data scientist provides knowledge about methods
and metrics to assess possible bias in the university admission and recom-
mender systems, based on the bias definitions provided by the domain expert);

• Legal expert provides knowledge about specific regulations if needed in the
fairness assessment process (in our examples, the legal expert provides knowl-
edge about possible regulations concerning university admissions or recom-
mender systems for particular domains).

Chapter 2. Background Knowledge 17

2.1.1 Bias Definition

The first step in the workflow depicted in Fig. 2.1 is the bias definition, which involves
both the domain and legal experts (step 1 in the Figure). In general, bias can be of
two types: [19], [31]:

• Group bias: if discrimination or favoritism is assessed at the group level (e.g.,
all the women for the University use case, or all the less popular libraries for the
TPL use case). Individual bias: if discrimination or favoritism is assessed for
any individual, regardless of their belonging to a specific group. For instance,
in our use cases, a student must not be admitted to the university only because
she is a relative of the university rector, or a library must not be recommended
only based on previous user preferences (regardless of its relevance).

It is worth mentioning that, even if considered by the literature, use cases regarding
individual bias are less common and, in general, individual bias is more difficult to
mitigate compared with group bias [15], [19], [77].

To establish a definition of bias within a specific domain, it is crucial to pinpoint
the following key concepts, as outlined in [19]:

• Sensitive variables: these are the variables that have the potential to lead to
discrimination;

• Positive outcome: This refers to a specific prediction generated by the ML
system that could potentially result in discriminatory consequences. Note that
this concept is domain-dependent and may change based on the perspective
from which we observe a given use case (e.g., a prediction about a customer
positively subscribing to a bank term deposit may be good for the business but
not for the customer’s wallet)

• Privileged and Unprivileged groups: These are the groups or entities identi-
fied based on specific values of the sensitive variables. Privileged groups may
be favored by the system, while unprivileged groups may face discrimination.
Note how these two groups are often referred to as sensitive groups, i.e., groups
that must be protected from discrimination or favoritism (e.g., by some regu-
lations).

Concerning the University use case (as reported at the bottom of Fig. 2.1), do-
main and legal experts want to assess if the ML system under analysis discriminates
against women. Thus, the type of examined bias is group bias, with the sensitive vari-
able being gender. A positive outcome would be successful admission to the university,
and the privileged group is men while the unprivileged one is women. For the TPL
use case, domain experts want to ensure that not only popular libraries are recom-
mended. Hence, the type of bias is still group bias, where the sensitive variable is
popularity. A positive outcome is a recommendation from the system. The privileged
group is popular libraries while the unprivileged group is unpopular libraries.

2.1.2 Fairness Analysis and Metrics

From an abstract bias definition, several fairness analyses can be depicted (step 2 in
Fig 2.1). In general, a fairness analysis has a scope, a set of metrics compliant with the
given scope (which can be fairness metrics known in the literature or can be custom
ones), and has a dataset, which contains all the information needed to perform the
given analysis.

Chapter 2. Background Knowledge 18

There are at least 26 different definitions and related metrics of fairness proposed
by the literature over the years [19], [78]. However, previous work also highlighted
how most metrics correlate or provide the same information [79]. In the following,
we describe the most common definitions and metrics of fairness adopted in previ-
ous work [15], [77], [80].

Statistical (Demographic) Parity (SP) is one of the first definitions of group fairness
proposed by the literature [81]. It assumes the independence among the predicted
positive label and the sensitive variables. It is defined formally as follows:

Definition 1 (Statistical Parity) Let Ŷ be the predicted value, yp the positive label, and S a
generic binary sensitive variable where S = 1 and S = 0 identify, respectively, the privileged
and unprivileged groups. A predictor is fair under Statistical Parity if:

P(Ŷ = yp|S = 1) = P(Ŷ = yp|S = 0)

The standard metric corresponding to this definition is the Statistical Parity Dif-
ference, which measures the difference among those probabilities:

SP = P(Ŷ = yp|S = 1)− P(Ŷ = yp|S = 0) (2.1)

This metric ranges from 0 to |1|, where 0 highlights fairness.
A different formulation for SP is Disparate Impact (DI) [82], which considers the

ratio among the two probabilities. In this case, following the 80% rule, the value
must be between 0.8 and 1.2 to have fairness [82]. DI is defined formally as follows:

Definition 2 (Disparate Impact) Let Ŷ be the predicted value, yp the positive label, and
S a generic binary sensitive variable where S = 1 and S = 0 identify the privileged and
unprivileged groups, respectively. A predictor is fair under Disparate Impact if:

0.8 ≤
P(Ŷ = yp|S = 1)

P(Ŷ = yp|S = 0)
≤ 1.2 (2.2)

Note how both SP and DI formulations do not consider the relation between
the model’s predictions and the ground truth values. Instead, they only assess the
independence between sensitive variables and positive predictions. Thus, they have
been classified as independence definitions [78].

Differently, definitions belonging to the separation category consider the relation
between the model’s outcome and the ground truth values [78].

Equal Opportunity (EO) [83] is a separation definition that considers the probability
of obtaining the positive prediction for instances belonging to the sensitive groups
given a positive value of the ground truth label. It is formally defined as follows:

Definition 3 (Equal Opportunity) Let Ŷ be the predicted outcome, Y the ground true
value, yp the positive label, and S a generic binary sensitive variable where S = 1 and S = 0
identify the privileged and unprivileged groups, respectively. A predictor is fair under Equal
Opportunity if:

P(Ŷ = yp|Y = yp, S = 1) = P(Ŷ = yp|Y = yp, S = 0)

The metric corresponding to this definition is the Equal Opportunity Difference,
which, like SP, computes the difference among those probabilities:

EO = P(Ŷ = yp|Y = yp, S = 1)− P(Ŷ = yp|Y = yp, S = 0) (2.3)

Chapter 2. Background Knowledge 19

Again, this metric ranges from 0 to |1|, where 0 means fairness.
Finally, Equalized Odds [83] is an extension of EO that assesses if the probability

of an item to be positively classified is the same with respect to the sensitive variable
and any possible ground truth value. It is formally defined as follows:

Definition 4 (Equalized Odds) Let Ŷ be the predicted value, Y the true value, yp the
positive label, and S a generic binary sensitive variable where S = 1 and S = 0 identify the
privileged and unprivileged groups, respectively. A predictor is fair under Equalized Odds
if:

P(Ŷ = yp|Y = y, S = 1) = P(Ŷ = yp|Y = y, S = 0) ∀y ∈ {y1, . . . , yn}

The metric corresponding to this definition is the Average Odds Difference (AO),
which computes the average of the difference among those probabilities:

AO =

[P(Ŷ = yp|Y = y1, S = 1)− P(Ŷ = yp|Y = y1, S = 0)] + . . .
+ [P(Ŷ = yp|Y = yn, S = 1)− P(Ŷ = yp|Y = yn, S = 0)]

n
(2.4)

A value of 0 for this metric highlights bias.
All these definitions were initially proposed for binary classification problems

(yp = 1). Still, they can be easily extended to the multi-class classification domain
by identifying one positive label value among the possible ones (yp ∈ {y1, . . . , yn}).

Recalling the presented use cases, assume that in the University scenario (see Fig.
2.1), the domain and legal experts decide that the ML system is fair if men and women
have the same probability of being admitted to the university. This is the scope of
the analysis. Hence, the data scientist suggests using the Statistical Parity fairness
metric, which is compliant with the given fairness definition. Finally, the domain
expert and the data scientist collect all the needed information (i.e., the predictions
of the ML model and the gender of each person) inside a dataset that will be used
for the analysis. It is important to mention that other analyses can be conducted. For
example, domain and legal experts may want to examine whether someone is only
admitted to a university based on their high school grades, regardless of gender.
Hence, other metrics (e.g., EO) can be used to cover this fairness definition, and
further information has to be provided in the dataset.

For the TPL use case, domain experts can state that a recommender system is free
from popularity bias if relevant libraries are recommended despite their popularity
[75]. To assess this definition, they adopt a variation of the Coverage metric, which
measures the percentage of non-popular items recommended over the total recom-
mendations [84]. Note how this metric does not come from the fairness literature
but is an adaptation of a metric from the recommender systems domain to assess
popularity bias [75]. Finally, like for the University use case, a dataset containing
the recommended libraries and their popularity is collected to perform the fairness
assessment.

2.1.3 Fairness Evaluation

The next step in the fairness assessment process is the implementation of the defined
fairness analyses (step 3 in Fig. 2.1). Concretely, this means implementing an au-
tomatic procedure that, given a specific dataset as input, computes all the selected
metrics and returns the calculated values. In our examples, the data scientist has
to implement software using a programming language (e.g., Python) that takes as
input the dataset and computes the Statistical Parity or Coverage fairness metrics.

Chapter 2. Background Knowledge 20

Once the results are computed, all parties must evaluate them to determine the
system’s fairness (step 4 in Fig. 2.1). For example, in our scenarios, the data scientist
notes that a SP score of zero or a Coverage score of one indicates fairness. Next, legal
and domain experts analyze the results to assess whether the ML system is fair based
on this definition.

The process depicted in Fig. 2.1 and described earlier can be challenging and
prone to mistakes, mainly because it involves several stakeholders and intercon-
nected tasks. To address these issues, we introduce MODNESS, a model-driven-
based approach that automates the assessment of fairness. This approach enables
users to define their notions of bias and fairness, enlarging the applicability of fair-
ness assessment to multiple application domains. We present the details of this ap-
proach in Chapters 5 and 6.

2.2 Bias Mitigation: Key Concepts and a General Workflow

This section presents the key concepts related to bias mitigation and describes a
general workflow to evaluate the effectiveness of fairness-enhancing methods.

2.2.1 Background on Fairness-Enhancing Methods

Over the years, many methods have been proposed to mitigate bias at different
phases of a learning-based system development workflow [19], [31]. We distinguish
among [85]:

• Pre-processing methods. Those approaches can be applied during the feature
engineering phase to reduce the underlying bias in data before training an ML
model. Examples of those models are presented in [82], [86];

• In-processing methods, which are employed during the model training phase
to change the learning process to remove discrimination. Widely adopted ex-
amples are reported in [87], [88];

• Post-processing methods, which can be applied during model evaluation phase
to re-calibrate an already trained model to reduce the learned bias. Standard
models of this category are [83], [89].

In general, the sooner a technique can be applied, the better because it can be chained
with other bias mitigation methods in the later processing phases [27], [90].

Among the different ML tasks, classification has been the task most addressed
for bias mitigation [19], [31].

Most of the methods available in the literature focus solely on binary classi-
fication with one sensitive variable [19]. Among them, one widely adopted pre-
processing method is the Sampling algorithm proposed by [86]. This method balances
both privileged and unprivileged users in the case of binary classification with a
single sensitive variable. Formally, let be S the sensitive variable with {w, b} ∈ S
representing the privileged and unprivileged groups, respectively, and let be Y the
target label with {+,−} ∈ Y defining the positive and negative outcomes. The Sam-
pling algorithm first splits the original dataset into four groups:

• Deprived group with Positive label (DP): all instances with S = b ∧ Y = +;

• Deprived group with Negative label (DN): all instances with S = b ∧ Y = −;

Chapter 2. Background Knowledge 21

• Favored group with Positive label (FP): all instances with S = w ∧ Y = +;

• Favored group with Negative label (FN): all instances with S = w ∧ Y = −.

Then, for each group, the algorithm computes its observed and expected sizes. Finally,
it balances the groups iteratively by randomly adding and removing instances until
the observed sizes of the groups are equal to their expected ones.

The Sampling algorithm is the starting point for the definition of the DEMV algo-
rithm described in Chapter 4. In fact, we have extended this algorithm to the multi-
class classification domain with multiple sensitive variables, and we have employed
different instance-generation strategies during the balancing process.

Very few methods are able to mitigate the bias in the multi-class classification do-
main [88], [89]. Among those, we mention the Blackbox post-processing algorithm pro-
posed by Putzel et al. [89]. This method extends the Equality of Odds algorithm [83] to
the multi-class classification setting. It involves the construction of a linear program
over the conditional probabilities of the adjusted predictor P(Yadj = yadj|Ŷ = ŷ, A =
a) such that the desired fairness criterion is satisfied by those probabilities. To build
the linear program, the authors formulate both the loss and fairness criteria as linear
constraints of the protected attribute conditional probability matrices. Then, this lin-
ear program is used to find the label value, among the possible ones, that minimizes
both the loss and the fairness constraints.

An in-processing method that solves unfairness in multi-class classification set-
tings is the one presented by Agarwal et al. [88]. This algorithm addresses two def-
initions of fairness at once: Demographic Parity and Equalized Odds. The authors for-
mulate such definitions as linear constraints and then build an Exponentiated Gradi-
ent (EG) reduction algorithm [91] that yields a randomized classifier with the lowest
error subject to the desired fairness constraints. The method follows a MinMax ap-
proach in which the players try to minimize the given constraint and maximize the
classifier’s score. The authors also propose a simplified Grid Search version of the
algorithm (GRID), which generates a sequence of labeling and weights and trains a
predictor for each one. The values yielding the best accuracy and fairness trade-off
are selected and thus returned. Although the authors study their algorithms mainly
in binary classification problems, they also show how their method can be applied
to regression and multi-classification problems.

To the best of our knowledge, most of the methods in the literature are primarily
designed for binary classification problems, and few of them can be applied in the
pre-processing phase. Moreover, we identified a few approaches realized to mitigate
bias in multi-class classification problems, and none works in the pre-processing
phase.

2.2.2 Workflow for Benchmarking Fairness-Enhancing Methods

Algorithm 1 presents the pseudo-code for a generic process used to train and evalu-
ate various combinations of machine learning models and fairness-enhancing meth-
ods. It is important to note that the process outlined here complements the fairness
assessment workflow described in Section 2.2. Specifically, this process assumes that
domain experts and data scientists have already established a high-level definition
of bias, have mapped the sensitive groups and the positive outcomes to a concrete
dataset, and have selected a set of metrics compliant with the given bias definition.
As for the fairness assessment workflow, also this process has been derived by an-
alyzing the behavior of the most adopted fairness-related libraries (i.e., IBM AIF360

Chapter 2. Background Knowledge 22

Algorithm 1: Fairness-Enhancing Methods Benchmarking Process
Input: Dataset d, ML Algorithms ML, Fairness Methods F,
Effectiveness and Fairness Metrics M

1 for m ∈ ML do
2 for q ∈ Q do
3 if q works on d then
4 Apply q on d;

5 if q works on m before training then
6 Apply q on m;

7 f = train m;
8 if q works on f then
9 Apply q on f ;

10 Compute selected metrics M on f ;

11 Evaluate the results;
12 Q = Select best Fairness Method;
13 M = Select best ML Algorithm;
14 M∗ = Train M with full dataset applying Q;
15 return M∗

[27] and Fairlearn [28]) and by reviewing foundational papers on bias and fairness
[14], [15], [19], [77].

Recalling the general workflow for the development of learning-based systems
presented in Figure 1.1, the depicted process may span during the feature engineering,
model training, and model evaluation phases. Thus, we assume that the data scientist
has already collected and cleaned the dataset to use and identified the set of ML
models, fairness-enhancing methods, and metrics more suited for the use case. For
each of the chosen ML algorithms, the data scientist applies the selected fairness-
enhancing methods according to their category (lines from 3 to 9 in Algorithm 1)[77]:

• if it is a pre-processing method, it has to be applied to the dataset during the
feature engineering phase before training the ML algorithm [43], [82], [86];

• if it is an in-processing method, it has to be applied during the model training
phase [87], [88];

• if it is a post-processing method, it can be applied in any phase after a first model
training phase (e.g., on an already deployed model [92] or on an additional
training phase [93]).

After training an ML model and applying a fairness-enhancing method, the data
scientist computes the selected metrics to assess the fairness and effectiveness of the
specific combination (line 10 in Algorithm 1). After repeating the process for all
the combinations of ML model and fairness-enhancing methods, the data scientist
selects the combination achieving the best fairness-effectiveness trade-off (lines from
11 to 15 in Algorithm 1). If the data scientist has a threshold to achieve, then they
can verify if at least one of the combinations satisfies the constraint. If so, one of the
suitable pairs is selected. Otherwise, they have to relax the threshold and repeat the
process.

From the workflow described in Algorithm 1, we extract a set of general steps
that a data scientist has to perform. Figure 2.2 sketches such a generalization. First,

Chapter 2. Background Knowledge 23

Data
Scientist

Features selection

Select
ML Methods

Select
Fair Methods

Select
Metrics

Evaluate the
results Yes

No

Are results
satisfying?

Train and
return the
best ML
setting

Experiment Execution

Train the
methods

Model Requirements Feature Engineering
Model Train/Test

FIGURE 2.2: Execution of the Fairness-Enhancing Methods Bench-
marking Process

the data scientist selects all the experiment features, i.e., the dataset, the ML mod-
els, the fairness-enhancing methods, and the related metrics (Features Selection step).
Those steps happen during the model requirements phase. Next, the data scientist
benchmarks the different ML models and fairness-enhancing methods combinations
using the general approach described in algorithm 1 (Experiment Execution in Figure
2.2). This step spans through the feature engineering, model training and model evalua-
tion phases. If the results are satisfying (i.e., they satisfy a given threshold), then the
best combination is returned. Otherwise, the data scientist has to repeat the process,
possibly relaxing the constraints.

It is worth mentioning that the selection of ML models and fairness-enhancing
methods for evaluation is closely related to the specific task and use case. Addition-
ally, the choice of ML models and fairness-enhancing methods may vary depending
on whether the system is intended for deployment or is already in use. For a system
that is still being developed, different ML models can be assessed. Conversely, for
a system that is already deployed, various fairness-enhancing methods should be
tested on the same ML model. For instance, recalling the University and TPL exam-
ples introduced at the beginning of this chapter, assume that, for the University use
case, the system needs to be deployed. Thus, the data scientist may select all ML
models used for classification and combine them with all pre-, in-, and post-processing
fairness-enhancing methods. Eventually, they will select the best combination. On
the contrary, assume that for the TPL use-case, the system is already deployed, but a
fairness issue has been detected during the model monitoring phase. Hence, to avoid
retraining the model from scratch, the data scientist may select all post-processing
fairness-enhancing methods and test them with the deployed ML model.1 Ulti-
mately, they can choose the best post-processing technique.

2.3 Conclusion

This chapter presented the key concepts related to fairness assessment and bias miti-
gation. Additionally, we outlined two general workflows for defining and assessing
fairness, as well as evaluating different methods that enhance fairness. Although
these two processes have been presented separately, they are strictly related and

1It is relevant to note that the model used for testing alongside these methods does not necessarily
have to be the deployed model; it could also be a new model of the same type that has been trained on
the same data. This design decision may also depend on the domain [15].

Chapter 2. Background Knowledge 24

span through many phases of a general learning-based systems development work-
flow (see Figure 1.1).

Those processes can be challenging and prone to mistakes, mainly because they
involve several stakeholders and interconnected tasks. Moreover, not all fairness-
enhancing methods can be applied to all ML models. This may create errors and
inconsistencies during the fairness-enhancing methods evaluation workflow. As
shown in our review, existing approaches for fairness assessment are strictly tied
to specific fairness definitions, and there is no low-code approach that guides the
different stakeholders through the developments of fair learning-based systems. In
addition, most bias mitigation approaches are for binary classification, while rele-
vant multi-class classification tasks are still poorly covered.

To address these issues, we first introduce in Chapter 4 a pre-processing algo-
rithm able to mitigate bias in binary and multi-class classification tasks with multi-
ple sensitive variables. Next, we introduce in Chapter 5 two formal models of the
fairness assessment and bias mitigation workflows introduced in this chapter. Those
formal models are the foundations of two low-code approaches presented in Chap-
ter 6. Finally, we present in Chapter 7 the results of a first attempt towards the early
detection of algorithmic bias (i.e., bias in the predictions of an ML model) starting
from datasets’ structural features (i.e., bias symptoms).

25

Chapter 3

Related Work on Fairness

This chapter discusses existing works related to the concepts presented in this part
of the thesis. Section 3.1 presents a survey of existing approaches for fairness as-
sessment, highlighting the main features provided. Section 3.2 describes existing
approaches related to early bias assessment. Finally,Section 3.3 discusses previous
works on bias in text-to-image generation models and Section 3.4 presents related
studies on model repositories.

3.1 Review of Existing Approaches for Fairness Assessment

This section presents the procedure exploited to gather pertinent literature within
the realm of fairness assessment. First, we describe the adopted procedure in Sec-
tion 3.1.1, including the search string and the inclusion and exclusion criteria. Sub-
sequently, Section 3.1.2 delves into an exploration of key features and sub-features
constituting the fairness assessment workflow that we use to classify the selected ap-
proaches, while Section 3.1.3 provides an overview and classification of the collected
approaches.

3.1.1 Methodology

In this section, we provide an overview of prominent approaches within the domain
of bias and fairness assessment in ML-based systems focusing on the SE commu-
nity. Please note that our aim is not to present a comprehensive survey of the en-
tire field, as it goes beyond the scope of this section. Instead, we have adopted a
tool-supported procedure inspired by the well-established "four W-question strat-
egy" [94] to select existing approaches that perform bias detection using automated
or tool-supported methods. In particular, our analysis is confined to peer-reviewed
scientific works that make significant contributions in two key areas: i) defining or
addressing fairness concerns within software systems, and ii) employing automated
methods to mitigate identified biases while considering notable datasets.

The four W-questions guiding our approach are as follows:

• Which? We conducted a comprehensive search, combining both automated
and manual methods, to gather relevant papers from a variety of sources, in-
cluding conferences and journals.

• Where? Our literature analysis focused on prominent software engineering
venues, encompassing ten conferences: ASE, ESEC/FSE, ESEM, ICSE, ICSME,
ICST, ISSTA, MSR, SANER, and MODELS as well as five journals: EMSE, IST,
JSS, TOSEM, and TSE. In particular, we collect relevant information for those
venues, i.e., title and abstract, that we used in the filtering process. To automate

Chapter 3. Related Work on Fairness 26

this process, we utilized the Scopus database1 and employed advanced search
and export functions to retrieve all papers published in specific venues within
the temporal range we decided.

• What? For each article, we extracted information from the title and abstract by
applying predefined keywords to ensure relevance to our research focus.

• When? Given that automated fairness assessment is a relatively recent research
area, our search was limited to the most recent five years, spanning from 2017
to 2023. This temporal constraint allowed us to capture the latest develop-
ments and trends in the field. It is worth noticing how the query was executed
in April of 2024, hence 2024 has not been considered.

TABLE 3.1: Number of papers for the related topics.

FAIR ML TOOL

FAIR 241 - -

ML 51 1,931 -

TOOL 56 123 3,438

We export the relevant papers from Scopus and exploit dedicated Python scripts
to search in title and abstract the following set of keywords in AND conjunction:

(i) FAIR: “fairness” or “bias”; (ii) ML: “data science” or “machine learning; (iii)
TOOL: “toolkit,” or “definition”, or “audit”, or “testing” or “model-based”. Table 3.1
reports the number of papers that contain such keywords in the corresponding col-
umn and row (e.g., 123 papers contain at least one term belonging to ML and TOOL
sets). Our ideal targets are papers containing at least one keyword for all the defined
sets of terms, i.e., FAIR, ML, and TOOL. By running such a combination, we obtain
only 15 works considering the abovementioned criteria. Therefore, we enlarged the
set of eligible papers to two additional combinations highlighted in bold, (i) FAIR
and ML; or (ii) FAIR and TOOL. In the end, we obtained a total of 107 papers, in-
cluding duplicate papers. By removing those ones, we ended up with 61 scientific
papers, including journal and conference publications.

Starting from this initial set of works, we manually inspected the title and ab-
stract to scale down the search to meet our requirements. In particular, we defined
the following inclusion and exclusion criteria:
✔ Inclusion criteria: We included all the approaches that use traditional bias defi-
nitions, i.e., group or individual. Furthermore, we consider toolkits or frameworks
that provide an automatic or semi-automatic strategy to assess fairness on a set of
use cases. Some of them have been published as extensions of initial works. There-
fore, we consider the most recent version of the tool in such cases.
✖ Exclusion criteria: The study we conducted intentionally excludes foundational
papers that primarily provide a high-level abstract definition of fairness, such as
surveys [19], [31], empirical studies [80], or position papers [14]. Additionally, we
excluded papers focusing on improving the fairness of underlying ML models [43],
[86], as our focus is on automating the assessment process through the explicit spec-
ification of the application domain.

1https://scopus.com

https://scopus.com

Chapter 3. Related Work on Fairness 27

2017 2018 2019 2020 2021 2022 2023
Year

0

2

4

6

8
Nu

m
be

r o
f p

ap
er

s

Venue
CONFERENCE
JOURNAL

FIGURE 3.1: Number of selected papers per year.

To ensure an unbiased selection process, we employed a rigorous approach.
Two different people independently evaluated all the papers, and the two senior
researchers thoroughly reviewed the entire selection process. Ultimately, this metic-
ulous process yielded a total of 26 works.2 Figure 3.1 depicts the retrieved papers
divided by year. Notably, there is an increasing trend with a peak in 2022, indi-
cating that automating fairness assessment is becoming increasingly relevant in the
SE community. The rising number of journal publications confirms this, suggesting
that researchers share more mature results than the initial studies that appeared in
2017. However, there is a noticeable decrease in the number of published papers in
2023, although this trend represents frameworks selected using the abovementioned
procedure. Therefore, it is not representative of the whole trend in SE concerning
fairness assessment.

3.1.2 Elicited features

Table 3.2 summarises the list of papers we collected by means of the previously de-
scribed process. For each approach, we list the name of the tool, the venue, the year,
and the underpinning mechanism used to define and assess fairness (if any). Fur-
thermore, starting from the four steps of the general fairness assessment workflow
described in Section 2.2, we elicit six different features to evaluate the degree of au-
tomation and customization of the selected approaches. These features are grouped
in Table 3.2 by the primary step of the workflow described in Figure 2.1 they belong
to, i.e., bias definition, fairness analysis specification, analysis implementation & fairness
assessment. The selected features are as follows:
➤ F1 - Bias definition: The approach models and assesses individual bias defini-
tions, group bias definitions, or both;

2The complete list of selected and excluded papers is available at the following link https:
//github.com/giordanoDaloisio/MODNESS/blob/main/Selected_papers.md

https://github.com/giordanoDaloisio/MODNESS/blob/main/Selected_papers.md
https://github.com/giordanoDaloisio/MODNESS/blob/main/Selected_papers.md

Chapter 3. Related Work on Fairness 28

➤ F2 - Abstract bias definition: The approach implements an extension mechanism
to provide a bias definition that is tailored for a specific domain and agnostic from a
specific fairness analysis or dataset (see steps 1 and 2 of Fig 2.1);
➤ F3 - Custom metric definition: Similar to the previous one, the approach allows
the definition of additional metrics to detect bias (i.e., metrics for less common use
cases like TPL);
➤ F4 - Metric composition: It is possible to combine defined metrics to create new
ones, for instance, by means of aggregation functions;
➤ F5 - Automated fairness assessment: The underlying system assesses the fairness
by automatically generating the corresponding source code;
➤ F6 - Tool availability: The paper is supported by a publicity available tool;

For each tool, we marked these features with supported (✔) in Table 3.2 while
we left blank unsupported features. Concerning the feature fairness definition, the
symbols I and G are used for individual and group bias, respectively.

TABLE 3.2: Comparison of the existing fairness toolkit and ap-
proaches.

Bias Definition
Fairness Analysis

Specification
Analysis Implementation &

Fairness Assessment

Approach Venue & Year Base strategy F1 - Bias def.
F2 - Abstract

bias def.
F3 - Custom
metric def.

F4 - Metric
Comp.

F5 - Automated
fairness assess.

F6 - Tool avail.

Aequitas [76] ASE (2018) Search-based G ✔ ✔

Themis [95] ESEC/FSE (2018) Search-based G ✔ ✔ ✔

TILE [96] ICST (2019) Metamorphic testing I ✔

ADF [97] ICSE (2020) Adversarial DL I ✔

Fairway [98] ESEC/FSE (2020) Search-based G ✔ ✔ ✔

DeepInspect [99] ICSE (2020) Deep learning G ✔ ✔

AITEST [100] ICSE (2021) Search-based I ✔

EIDG [101] ISSTA (2021) Search-based I ✔

Fair-SMOTE [102] ESEC/FSE (2021) Situation testing I , G ✔ ✔

Biswas and Rajan [103] ESEC/FSE (2021) Casual fairness G ✔ ✔

Fairea [35] ESEC/FSE (2021) Mutation testing G ✔ ✔

BiasFinder [36] TSE (2021) Mutation testing I ✔ ✔

FairKit-learn [64] ICSE (2022) Search-based I , G ✔ ✔

PAIRFAIT-ML[104] ICSE (2022) Search-based G ✔

MAAT[34] ESEC/FSE (2022) Ensemble learning G ✔ ✔

FairMask[105] TSE (2022) Hybrid G ✔ ✔

ExpGA [106] ICSE (2022) Genetic algorithm I ✔ ✔

Astraea [107] TSE (2022) Grammar-based gen. I , G ✔ ✔

SBFT [108] EMSE (2022) Genetic algorithm I ✔

NeuronFair [109] ICSE (2022) Adversarial DL I ✔ ✔

LTDD [110] ICSE (2022) Linear regression G ✔ ✔

iRec2.0 [111] TOSEM (2022) Optimization problem I ✔

FairML [112] MODELS (2022) MDE-based I , G ✔ ✔ ✔

AequeVox [113] FASE (2022) Metamorphic testing G ✔ ✔

FairiFy [114] ICSE (2023) Satisfiability modulo theories I ✔ ✔

DICE [115] ICSE (2023) Search-based testing I ✔ ✔

3.1.3 Selected approaches

Aequitas [76] exploits three different search-based strategies to assess the group fair-
ness of benchmarking ML-based classifiers, i.e., random, semi-directed, and fully
directed. The results of the conducted evaluation show that Aequitas can reduce the
unfairness of the examined ML models.

Similarly, Themis [95] provides a GUI to specify the schema of the dataset on
which a user wants to assess fairness and generates a test case for it. Furthermore, it
generates a report showing the relative group fairness for each variation in the value
of the variables.

Sharma et al. [96] investigate fairness in the learning phase of an ML algorithm.
The proposed tool, called TILE, relies on a metamorphic testing approach to analyze

Chapter 3. Related Work on Fairness 29

the so-called balanced data usage, i.e., the learner should treat all data in the training
set equally. TILE assesses fairness regarding this metric by being tested on several
scikit-learn ML models.

A scalable gradient-based algorithm called Adversarial Discrimination Finder
(ADF) has been proposed to assess individual bias by injecting individual discrim-
inatory instances into a given dataset [97]. The global generation phase generates
discriminatory entities by combining generative models and clustering techniques.
Such data are refined by the local generation phase using underpinning gradients.
As stated in the evaluation, the ADF algorithm overcomes two state-of-the-art tools
regarding effectiveness and efficiency.

Fairway is a tool proposed by Chakraborty et al. that covers both bias detection
and mitigation [98]. This tool works under the Equal Opportunity (EO) [83] and Av-
erage Odds (AO) [116] group definitions of fairness by identifying ambiguous data
points. Next, it removes the bias learned by the ML algorithm through an opti-
mization approach. Fairway succeeds in improving fairness under the EO and AO
definitions.

Fairness in image classification has been investigated in [99]. The authors pro-
pose DeepInspect, a deep learning approach to mitigate two types of discrimination,
i.e., confusion and bias. The underpinning network uses the neuron activation prob-
ability (NAP) matrix to predict the abovementioned discriminations. The results
show that DeepInspect performs better than existing approaches in terms of accu-
racy, thus detecting misclassification correctly.

AITEST [100] is a tool that combines constraint-based linear optimization with
the local interpretable model-agnostic explanation (LIME) techniques to perform in-
dividual fairness assessment. The proposed hybrid search strategy outperforms two
notable fairness toolkits, i.e., Themis and Aequitas.

The same authors of [97] extend their former work by proposing an Efficient Indi-
vidual Discriminatory Instances Generator (EIDIG) to generate individual fairness test
cases for DNN models systematically [101]. The evaluation demonstrates that con-
sidering the gradient of the model output instead of the gradient of the loss improves
the ADF’s overall accuracy and F1 scores.

Fair-SMOTE [102] has been conceived to remove bias by exploiting a relabeling
strategy. After the bias detection phase, it rebalances sensitive groups using the
K-nearest neighbour algorithm. The results show that Fair-SMOTE solved biases
before training the models compared to existing approaches.

Biswas and Rajan [103] apply fairness assessment to the preprocessing steps of
ML pipelines. Built on top of the fairness causality definition, the approach auto-
matically computes the fairness metrics at each preprocessing step of a given ML
pipeline.

Fairea [35] mitigates group biases based on bias-mitigation models generated
using a mutation engine. The tool identifies and tests five bias mitigation strategies
to measure the trade-off between accuracy and fairness. Fairea has been evaluated
using two different metrics, i.e., statistical parity difference and average odds differ-
ence.

Similarly, BiasFinder [36] adopts mutation testing to assess fairness in sentiment
analysis (SA) systems. The mutant engine produces actual instances by relying on
bias-targeting templates extracted from the textual content. The tool was evaluated
quantitatively and qualitatively by considering two large SA datasets and human
annotators.

Being built on top of sklearn and AIF360 frameworks, the Fairkit-learn toolkit
[64] provides a comprehensive platform to train, test, and compare ML models by

Chapter 3. Related Work on Fairness 30

considering fairness aspects. The tool retrieves fairer models than the two above-
mentioned libraries by relying on a set of Pareto-optimal strategies.

PAIRFAIT-ML [104] exploits three different dynamic search algorithms to sup-
port hyper-parameters tuning by providing a set of bias-free configurations. The
evaluation shows that the retrieved items reduce the bias by considering two met-
rics, i.e., equal opportunity and average odd difference.

Chen et al. [34] propose MAAT, an ensemble approach to optimize the bias re-
moval by combining two different models, i.e., fairness and performance models.
The former relies on the undersampling strategy to mitigate the group bias. The
latter is combined with the fairness model to enhance the mitigation process regard-
ing execution time. The empirical evaluation shows that MAAT outperforms the
existing approaches, thus mitigating the detected biases in less time.

FairMASK [105] is a hybrid approach that exploits the explanation bias technique
to infer possible biases before the training phase. In particular, the underpinning
model is trained on non-protected attributes to use as the dependent feature in the
classification task. SUbsequently, the approach performs the prediction phase by
using a masking strategy to assess the overall performance. FairMASK has been
compared with benchmarking tools, demonstrating that the adopted technique is
more effective in mitigating group biases.

Fan et al. propose a model-agnostic individual fairness testing approach, namely
ExpGA, based on genetic algorithms [106]. The proposed strategy can handle black-
box models by feeding the underlying model with the prediction probabilities, thus
optimizing the fitness value. The approach is evaluated by considering i) the overall
performance, ii) the execution time, and iii) improvement through retraining.

Conceived explicitly for NLP systems, ASTRAEA [107] is a grammar-based instance-
generation tool that identifies features causing fairness violations given an input
model and mitigates them. To this end, it extracts sensitive attributes from the input
grammar to cover individual and group fairness metrics.

Perera et al. propose the Search-based Fairness Testing (SBFT) tool to evaluate the
individual fairness of ML regression systems [108] based on the fairness degree metric.
The tool generates a set of unfair instances using a genetic algorithm approach. SBTF
outperforms Aequitas and Themis in discovering individual unfairness.

Similar to [97], NeuronFair [109] exploits the adversarial strategy to generate
individual discrimination instances (IDIs) and produce interpretable test cases for
DNNs. The findings show that NeuronFair outperforms four baselines in terms of
four different aspects, i.e., effectiveness, efficiency, interpretability, and generaliza-
tion, by considering seven different datasets.

Li et al. [110] propose a logistic-regression-based training data debugging (LTDD)
strategy to remove group bias from training feature values. In this respect, the ap-
proach predicts the biased part of the features and removes them from the training
samples to predict the final label. The proposed strategy outperforms state-of-the-art
methodologies in terms of notable fairness indicators.

iRecSys2.0 is a fairness-aware in-process crowdworker recommendation system
proposed by Wang et al. [111]. The proposed approach is optimized to overcome
popularity bias by means of a multi-objective optimization-based re-ranking com-
ponent. The authors evaluated their approach in terms of the effectiveness of the
predictions and fairness.

FairML [112], an MDE-based approach specifically conceived to conceptualize
fairness by relying on a tailored metamodel. The dedicated DSL covers the defini-
tion of bias and the actual assessment using predefined metrics. FairML eventually

Chapter 3. Related Work on Fairness 31

generates a YAML specification of the system that is compliant with the metamodel
that the user can fine-tune.

Aequevox [113] is a testing-based approach to test fairness in automatic speech
recognition (ASR) systems. Based on a tailored definition of group bias in the ASR
domain, the system first uses the metamorphic testing technique to locate possi-
ble bias in the preprocessed speech. Afterward, fault localization is employed to
find unrepresented groups by employing Levenshtein distance. Aequevox has been
evaluated on three different commercial ASR systems, showing that the approach
can automatically identify group bias in different languages

Farify [114] assesses the fairness of neural networks model using satisfiability
modulo theories (SMT) technique. Given a trained neural network and targeted
fairness expressed as a SAT formula, i.e., individual fairness, the approach applies
input partitioning and sound pruning to identify neurons that are not activated. In
addition, Fairify employs heuristic pruning to filter out neurons that can lead to bias,
thus preserving fairness. The conducted experiment demonstrates that the approach
is a light-weight solution for assessing fairness in neural networks.

Similarly, DICE [115] is an automatic test-generation approach to detect individ-
ual bias in Deep Neural Networks (DNNs). As the first step, the approach generates
test cases to identify the amount of discrimination for a given dataset. Then, the
generated test have been used to locate neurons with a significant causal contribu-
tion to the discrimination. To assess the tool’s effectiveness, DICE has been run on
ten different datasets, showing that the approach can locate and mitigate individual
bias.

In summary, most reviewed tools primarily focus on applying pre-existing fair-
ness definitions and metrics, ultimately conducting the final assessment within the
social domain. Consequently, we recognize a compelling need to offer users a com-
prehensive and domain-agnostic framework that empowers them to define and eval-
uate their own bias and fairness criteria. Moreover, we recognize the lack of ap-
proaches that guide data scientists less experienced in the fairness domain through
the development of fair learning-based systems. We address those gaps by propos-
ing two low-code approaches to support the development of fair learning-based sys-
tems in Chapters 5 and 6.

3.2 Review of Existing Approaches for Early Bias Detection

This section overviews empirical studies on early detection of bias. Oneto et al. [117]
employs a multi-task learning (MLT) approach to predict sensitive features based
on non-sensitive ones. Openja et al. [118] employs a counterfactual approach to re-
move bias-inducing features. First, the divergence measurement metrics are com-
puted to assess if there is some potential bias in the distribution. Then, the authors
apply a data-swapping strategy to measure the impact of the features on the final
predictions. ReFair [119] is a framework to automatically classify sensitive features
from the textual requirements using a tailored fairness ontology. Due to the lack
of publicly available requirements datasets for fairness auditing, the authors built
a synthetic dataset of user stories using the GPT language model. By relying on
the definition of causal fariness [120], Galhotra et al. [121] suggests a new set of fea-
tures that can or cannot introduce bias given an initial set of variables extracted from
the considered datasets, including a synthetic one used for assessing the complex-
ity of the underpinning algorithm. This approach can be seen as complementary
to ours since it is able to add an extended set of feature variables given an initial

Chapter 3. Related Work on Fairness 32

one. Mecati et al. [122] adopts a mutation-based approach to predict possible dis-
crimination using four different balance indexes, i.e., Gini, Shannon, Simpson, and
Imbalance Ratio. Starting from an initial set of sensitive variables, the approach gen-
erates synthetic datasets according to different levels of balance in the data. Yik et al.
[123] uses a functional specified complexity algorithm to identify potential bias in
the dataset without training the ML classifiers. The approach is efficient in terms
of computation even for a large number of ten different sensitive variables. Con-
stantin et al. [124] propose FairAlign, a toolkit that supports the fairness auditing
process using human feedback. In particular, the proposed tool has been used to
annotate the variables that are perceived as biased. Afterward, FairAlign computes
a set of fairness metrics and compares the prediction with the human judgment col-
lected. In this respect, it is the only approach that can partially cover the MP feature,
even though it is time-consuming since the whole procedure is performed manually.
Zhang and Harmar [125] correlate the size of training data and features in group fair-
ness assessment. The analysis involves three notable ML models and five different
datasets that exhibit biases. The results show that a larger training set has a negative
effect on the whole fairness metrics. On the contrary, increasing the features can lead
to a reduction of the bias. Du and Chen [126] analyze fairness testing in deep learn-
ing models. In particular, they define the notion of context referred to other parts
apart from the algorithm, e.g., hyperparameters and label bias configuration. They
conducted an extensive empirical study that covered 12 datasets and 10,800 investi-
gated cases by evaluating them in terms of fairness metrics and test adequacy. The
conducted evaluation shows that better test adequacy does not necessarily lead to
improvement in terms of fairness metrics.

The most relevant work to the one presented in Chapter 7 is [37]. In this em-
pirical work, the authors perform a first investigation of the relationship of fairness
metrics with data and the predictive model, i.e., data fairness metrics (DFMs) and
model fairness metrics (MFMs). By testing four different ML models on five real-
world tabular datasets, the analysis reveals a positive correlation between DMFs
and MFMs, even though it decreases when the training sample size increases. In
particular, DFMs can be used as an early warning system to identify fairness-related
data drifts in automated ML pipelines. Compared to the work presented in this the-
sis, the authors consider at most only five datasets and focus on two metrics both
residing in the independence category.

In Chapter 7, we introduce the concept of bias symptoms to support the early
detection of different definitions of bias in the dataset. We evaluate the proposed
approach on 24 different datasets.

3.3 Related Work on Bias in Text-to-Image Generation Mod-
els

Different works have analyzed the biases exposed by text-to-image generation mod-
els. Bianchi et al. [127] and Naik et al. [128] have shown how models like Dall-E or
Stable Diffusion reinforce existing biases even with prompts simply describing occu-
pations or traits. Sun et al. performed an extensive study of the Dall-E 2 image gen-
eration model, showing how it systematically under-represents women in specific
job occupations like computer programmer, sales manager, or criminal investigator [129].
Luccioni et al. studied the gender and ethnicity bias exposed by Dall-E 2 and Stable
Diffusion 1.4 and 2, showing how those models systematically discriminate gender

Chapter 3. Related Work on Fairness 33

and ethnicity groups when using specific adjectives (like ambitious, assertive, support-
ive, or sensitive) and jobs (like computer programmer, clerk or hostess) in the prompt
[130]. Wan et al. performed a survey study of different works analyzing the bias ex-
posed by text-to-image generation models [131]. They show how most works focus
on gender and skin tone bias while not focusing on other ethnical features. Moreover,
they address how most works address bias exposed toward generic job categories
without focusing on specific aspects. The only work analyzing the bias exposed by
image generation models for SE tasks is the one proposed by Sami et al. [60]. In their
study, the authors analyze the gender bias exposed by the Dall-E 2 model in gener-
ating images for SE tasks. To this aim, they employ and adapt the dataset proposed
by Treude et al. for analyzing the bias exposed by GPT textual models for SE tasks
[61]. In Section 8.1, we extend the study of Sami et al. by analyzing the gender and
ethnicity bias exposed by three versions of the Stable Diffusion model - SD 2, SD XL,
and SD 3 - towards SE tasks.

3.4 Related Studies on Model Repositories

Castano et al. [132] investigate to what extent the carbon footprint is reported on
HF hub. After collecting 1,417 models hosted on the platform, the carbon dioxide
emission has been evaluated and correlated with different factors such as model size,
dataset size, and application domains.

Gong et al. [133] conducted a comprehensive study of the PTMs reuse stored
in six different model repositories, including Hugging Face. After data cleaning
and labeling steps, the authors propose code contract composed of pre- and post-
conditions for re-usage in software development, e.g., input data, intended usage,
and performance.

Di Sipio et al. [134] leverages the HF dump to classify PTMs automatically from
the corresponding model card. In addition, they provide an initial overview of their
usage in the most prominent SE venues and propose an initial mapping algorithm
that maps generic labels to specific SE tasks. The findings of the paper show that
i) curated model cards are adequate to train traditional ML classifiers and ii) the
majority of the PTMs are used for supporting code and documentation generation.

Montes et al. [135] highlights discrepancies in the documentation of PTMs that
support image classification across four different model repositories, i.e., Tensor-
Flow Model Garden, ONNX Model Zoo, Torchvision Models, and Keras Applica-
tions. The conducted analysis of 36 selected models shows that there are severe
discrepancies across the various platforms, suggesting that developers needs to care-
fully check the provided documentation on model zoos.

Pepe et al. [136] conducted a large-scale study on 159,132 models stored on HF by
focusing on the documentation, licenses, and fairness aspects. Results of the study
indicate that only 18% of the analyzed models declare a bias in the provided docu-
mentation. In addition, 31% of the models have a license declared with a prevalence
toward permissive ones that impose a “responsible” model reuse.

The most close work related to the one presented in Chapter 8 is Gao et al. [137].
In their work, the authors search for ethical concerns in HF models leveraging the
API and KeyBERT model, ending up with a dedicated taxonomy. Compared with
the abovementioned works, we move a step forward by searching HF model directly
exploited in open-source projects available on GitHub. In addition, we investigate
the usage of fairness libraries in combination with the PTM models. We exploit this
analysis in Section 8.2.

34

Chapter 4

Improving Fairness in Binary and
Multi-Class Classification

In recent years, different methods have been proposed to mitigate bias at several lev-
els of data processing [19], [31]. However, we notice that, even though it is widely
adopted and constitutes a building block for personalization and search systems
[29], [30], [138], the multi-class classification problem is still not effectively addressed
[139]. In addition to fairness, a system must also have high effectiveness to be us-
able in the real world. However, in most cases, the mitigation of bias negatively
influences the model’s effectiveness [77], [80]. This trade-off must be managed,
for example, by adequately generating or modifying the instances of a dataset in
a pre-processing context or by suitably modifying the behavior of a method in an
in-processing context.

For the aforementioned reasons, in this chapter, we present, as a building block
of other learning-based systems, a bias mitigation method capable of i) managing
an arbitrary number of sensitive variables in the multi-class classification scenario
ii) preserving the accuracy of the predictions.

Referring to the challenges and contributions described in Chapter 1, this chapter
presents the contribution CN1 proposed to address the challenge CH1.

The rest of this chapter is structured as follows: Section 4.1 describes the re-
search questions that we will use throughout this chaper. In Section 4.2, we describe
in detail the proposed approach; Section 4.3 focuses on the experimental analysis
conducted to evaluate the most effective generation strategy and to compare DEMV
in both binary and multi-classification scenarios. Additionally, it includes a descrip-
tion of how to reproduce the experiments. In Section 4.4, we discuss the results, and
we answer the four RQs. Finally, Section 4.5 reports possible points of improvement
of DEMV and concludes the chapter.

4.1 Research Questions

To conduct our research and to better address the problem of bias mitigation in
multi-class classification, we formulate the following four research questions (RQ)
that will help to highlight the fundamental findings and novel contributions pre-
sented in this chapter.

RQ1 What are the strengths and limitations of current existing approaches ad-
dressing bias mitigation in multi-class classification problems?

We analyze three baselines designed to mitigate bias in multi-class classifica-
tion problems, namely Exponentiated Gradient and Grid Search methods from
[88], and the Blackbox method from [89]. To the best of our knowledge, these
are the only methods implemented for the multi-class classification task. To

Chapter 4. Improving Fairness in Binary and Multi-Class Classification 35

highlight their strengths and weaknesses, we apply each method to a hetero-
geneous set of binary and multi-class datasets that are widely used in research
(extensively discussed in section 4.3.2).

RQ2 How can we design a novel approach that goes beyond the existing base-
lines?

To overcome some of the limitations of the analyzed baseline, we present the
Debiaser for Multiple Variables (DEMV). DEMV is a generalization of the Sam-
pling algorithm proposed by [86]. DEMV is model- and data-agnostic, allow-
ing its introduction in already existing systems without particular effort and
without introducing structural changes.

DEMV
Dataset Debiased

Dataset

Instance generation
strategy

FIGURE 4.1: Application of DEMV

To the best of our knowledge, DEMV is the first proposed pre-processing method
to mitigate bias caused by an unequal distribution of instances in the popula-
tion (i.e., unbalanced groups bias [19]) in an agnostic way in both binary and
multi-class classification considering multiple sensitive variables. As high-
lighted in Figure 4.1, DEMV takes as input a generic dataset and returns in out-
put the debiased dataset without considering the classifier involved in the task.
We implement DEMV with a plug-in approach where the user can select dif-
ferent Instance generation strategies. The source code is provided on GitHub.1 In
addition, DEMV is available as a package in PyPI repository2 and as a method
in the SoBigData RI [45].

• RQ3 How can DEMV keep a high level of accuracy while improving fair-
ness?

Since DEMV is a pre-processing algorithm, the fairness and accuracy trade-
off can be managed by better manipulating the instances of the dataset. Since
our approach tackles the unbalanced groups bias, this means generating new
instances that are coherent with the existing ones in terms of values and dis-
tribution. We plug-in in DEMV three different generating strategies, namely
Uniform3, SMOTE [140] and ADASYN [141]. To evaluate the influence of each
strategy on DEMV’s ability to enhance the fairness and effectiveness of the
classifier, we extensively evaluate DEMV by employing nine datasets exten-
sively used in literature (see Section 4.3.2). We perform this analysis both in
binary and multi-class settings.

• RQ4 In which conditions does DEMV goes beyond the existing baselines?

To answer this question, we run a set of experiments aiming to evaluate the
performance of DEMV in improving fairness while keeping a high level of
accuracy. In particular, we evaluate it in binary and multi-class classification

1https://github.com/giordanoDaloisio/demv2022
2https://pypi.org/project/demv/
3Uniform strategy replicates the instances of the dataset with a uniform probability distribution.

https://github.com/giordanoDaloisio/demv2022
https://pypi.org/project/demv/

Chapter 4. Improving Fairness in Binary and Multi-Class Classification 36

problems and consider sensitive groups identified by up to three sensitive vari-
ables. To demonstrate the broad validity of DEMV, we employ in the experi-
ments a heterogeneous set of ML classifiers, namely Logistic Regression, Multi-
Layer Perceptron, Gradient Boosting Classifier and Support Vector Classifier (SVC).
As we show in Section 4.3.4, DEMV outperforms the baselines in the binary
task when more than two sensitive variables are employed, while it remains
competitive with one or two sensitive variables. In the case of the multi-class
task, DEMV outperforms the baselines in every setting (i.e., number of sen-
sitive variables) for all the considered datasets. Finally, DEMV improves the
fairness of all the analyzed classification methods without affecting their be-
havior and maintaining a considerably high level of accuracy.

4.2 Debiaser for Multiple Variables (DEMV)

In this section, we describe in detail the Debiaser for Multiple Variables (DEMV) ap-
proach, a pre-processing bias mitigation method for multiple sensitive variables in
the classification context.

The main idea behind the proposed method is that to enhance effectively the
classifier’s fairness during pre-processing is necessary to consider all possible com-
binations of the values of the sensitive variables and the label’s values for the defini-
tion of the so-called sensitive groups. Under the definition of bias considered in this
work (i.e., unbalanced groups bias), if a dataset is biased, we observe that the size of
the sensitive group identified by the privileged value of the sensitive variable (e.g.,
men) and the positive label (e.g., high income) should be larger than expected. In
comparison, the size of the sensitive group identified by the unprivileged value of
the sensitive variable (e.g., women) and the positive label (e.g., high income) should
be smaller than expected. In the same way, the size of the sensitive group identified
by the unprivileged value of the sensitive variable and the negative label should be
larger than expected, and the group size determined by the positive value of the
sensitive variable and the negative label should be smaller than expected. For this
reason, to enhance the fairness of the classifier, we have to perfectly balance the size
of these groups by adding or removing items to remove disparity.

We approach the problem by recursively identifying all the possible groups given
by combining all the values of the sensible variables with the belonging label (class).
Next, for each group, we compute its expected (Wexp) and observed (Wobs) sizes4

and look at the ratio among these two values. If Wexp\Wobs = 1, it implies that
the group is fully balanced. Otherwise, if the ratio is less than one, the group size
is larger than expected, so we must remove an element from the considered group
according to a chosen deletion strategy. Finally, if the ratio is greater than one, the
group is smaller than expected, so we have to add another item accordingly to a
generation strategy. For each group, we recursively repeat this balancing operation
until Wexp\Wobs converge to one. It is worth noting that, in order to keep a high level
of accuracy, the new items added to a group should be coherent in their values and
distribution with the already existing ones.

Hence, DEMV can be defined as an algorithm made of two separate procedures:
identification of the sensitive groups and balancing of them. In the following, we
first illustrate the procedure used to identify the sensitive groups; then, we describe
the balancing step.

4the formal definition of these values is given in Section 4.2.1

Chapter 4. Improving Fairness in Binary and Multi-Class Classification 37

4.2.1 Sensitive Groups Identification

The identification and management of the sensitive groups are performed by the
DEMV recursive function, whose pseudo-code is shown in Algorithm 2.5

Algorithm 2: Pseudo-code of DEMV
Input: (Dataset D, Sensitive variables S1, S2, . . . , Sn, Label L, i = 0, G = [],

condition=true)
Output: Sampled dataset DS

1 n = length({S1, S2, . . . , Sn})
/* base condition: check if all the sensitive variables have

been explored for a given condition */
2 if i == n then
3 foreach l ∈ L do
4 g = {X ∈ D| condition ∧ L == l}

5 Wexp =
|{X ∈ D|condition}|

|D| ∗ |{X ∈ D|L == l}|
|D|

6 Wobs =
|g|
|D|

7 gb = BALANCE(g, Wexp, Wobs)
8 add gb to G

9 return G

10 else
/* recursion point: select a new sensitive variable and call

DEMV for each possible value of the variable */
11 i = i + 1
12 foreach s ∈ Si do
13 G

′
= DEMV(D, S1, . . . , Sn, i, G, condition = condition ∧ Si == s)

14 add G
′

to G

/* end condition: check if the number of explored sensitive
groups is equal to the number of all possible combinations
among values of the sensitive variables and values of the
label */

15 if length(G) == |L| ∗ (∏n
i=1 |Si|) then

16 DS = merge all g ∈ G
17 return DS

18 else
/* if the end condition is not satisfied, simply return the

set of explored sensitive groups */
19 return G

The main scope of this function is to identify and manage all the possible sen-
sitive groups of a dataset. To this aim, this function takes as input the dataset D,
the categorical sensitive variables S1, . . . , Sn, the label L and other parameters useful
for the recursion: a counter i initially set to 0 (used to count the number of explored

5We recall that a recursive function is generally made of three main sections: a base condition, which
defines the main return statement of the function, a recursion point in which the function calls itself,
and an end condition representing the end of the process.

Chapter 4. Improving Fairness in Binary and Multi-Class Classification 38

sensitive variables), an array G initially empty (used to collect the balanced, sensi-
tive groups), and a boolean condition initially set to true (used to define the condition
needed to identify the different sensitive groups). Lines from 2 to 9 define the base
condition of the function. This condition checks if all the sensitive variables needed
to identify a sensitive group have been explored (i.e., the counter i equals the num-
ber of sensitive variables). If so, the algorithm iterates the possible values of the
label and creates, for each of them, a corresponding sensitive group g is defined as
{X ∈ D|S1 == s1 ∧ S2 == s2 ∧ · · · ∧ Sn == sn ∧ L == l}, where s1, . . . , sn are
possible values of the sensitive variables and l is a value of the label.

Then, for each group, the algorithm computes expected and observed sizes. These
two values are defined respectively as:

Wexp =
|{X ∈ D|S = s}|

|D| ∗ |{X ∈ D|L = l}|
|D| (4.1)

Wobs =
|{X ∈ D|S = s ∧ L = l}|

|D| (4.2)

where S = s is a generic condition on the value of the sensitive variables6 (i.e.,
condition variable in algorithm 2) and L = l is a condition on the label’s value. It
is worth noting that |{X ∈ D|S = s ∧ L = l}| is equal to the size of the sensitive
group g identified by the conditions S = s and L = l.

Next, the algorithm balances the group by invoking the BALANCE function (list-
ing Algorithm 3). This function implements the balancing strategies described in
section 4.2.2. Finally, the approach adds the balanced group gb to the array G (used
to collect all the balanced groups) and returns it.

Lines from 11 to 14 identify the recursion point of the function. The purpose of
the recursion is to build the condition needed to determine the sensitive groups dy-
namically. In particular, if the algorithm has not explored all the sensitive variables
(i.e., the value of i is not equal to the number of sensitive variables), the algorithm
starts exploring a new one (variable Si in the code). The exploration is done by it-
erating all the possible values of the current sensitive variable Si. Each value of the
sensitive variable corresponds to a new sensitive group that must be identified and
balanced. Each identified sensitive group is collected inside a temporary set G′. The
returning set of sensitive groups G′ partially identified by the given sub-condition is
then merged with the given set of sensitive groups G.

Finally, lines from 15 to 19 define the end condition of the function. In particular,
the total number of sensitive groups obtainable from a dataset with n sensitive vari-
ables and a label L is equal to the product of all the possible values of the sensitive
variable and the values of the label, that is:

|L| ∗
(

n

∏
i=1

|Si|
)

If the length of G is equal to this value, then the function has considered and bal-
anced all the groups and returns the final sampled dataset DS. Otherwise, the func-
tion, being in the middle of the recursion, returns G and will be again merged with
the result of the previous recursive calls. The procedure shown in Algorithm 2 can
also be applied to binary classification problems; in that case, the number of sensitive

6The variables can be binary, discrete or categorical ones

Chapter 4. Improving Fairness in Binary and Multi-Class Classification 39

groups will be equal to

2 ∗
(

n

∏
i=1

|Si|
)

We like to note that, even if the number of sensitive groups grows exponentially
with respect to the number of sensitive variables, this number is still manageable in
the real-world case scenario where a small number of sensitive variables are typi-
cally considered (e.g., solely 32 groups are present in a multi-class classification task
where four classes and three binary sensitive variables are considered).

S1 = 0

SL = +

And

SL = -

And

S1 = 1

SL = +

And

SL = -

And

True

And And

(A) Step 0: i = 0 and condition = true

S1 = 0

SL = +

And

SL = -

And

S1 = 1

SL = +

And

SL = -

And

True

And And

(B) Step 1: i = 1 and condition = (true ∧
S1 == 0)

S1 = 0

SL = +

And

SL = -

And

S1 = 1

SL = +

And

SL = -

And

True

And And

(C) Step 2: i = 1 and condition = (true ∧
S1 == 0 ∧ SL == +)

S1 = 0

SL = +

And

SL = -

And

S1 = 1

SL = +

And

SL = -

And

g1

True

And And

(D) Step 3: first sensitive group identified

S1 = 0

SL = +

And

SL = -

And

S1 = 1

SL = +

And

SL = -

And

g1

True

And And

(E) Step 4: i = 1 and condition = (true ∧
S1 == 0 ∧ SL == −)

S1 = 0

SL = +

And

SL = -

And

S1 = 1

SL = +

And

SL = -

And

g1 g2

True

And And

(F) Step 5: second sensitive group identi-
fied

FIGURE 4.2: Example execution of the first steps of DEMV algorithm

To better clarify the behavior of DEMV, figure 4.2 shows an example execution of
the first steps of the algorithm on a dataset with one binary sensitive variable and a
binary label. For the sake of simplicity in this example we are using binary variables,
but as highlighted in section 4.3, DEMV can also be applied to multi-class labels

Chapter 4. Improving Fairness in Binary and Multi-Class Classification 40

and categorical sensitive variables. Figure 4.2a represents step 0 of the algorithm,
in which the counter is set to 0, and the condition is set to true. Next, the algorithm
starts a depth-first exploration of the depicted tree. In figure 4.2b, the algorithm adds
the condition S1 == 0 to the initial true condition, and in figure 4.2c the condition
SL == + is also added. Figure 4.2d depicts the identification of the first sensitive
group defined as {X ∈ D|S1 == 0 ∧ SL == +}. Finally, figures 4.2e and 4.2f show
the identification of the second sensitive group, this time defined as {X ∈ D|S1 ==
0 ∧ SL == −}. The algorithm then proceeds to balance the other sensitive groups.
When all the groups have been balanced, they are merged to return a fully balanced
dataset.

4.2.2 Balancing Strategies

The group-balancing operation is implemented by the BALANCE function, whose pseudo-
code is depicted in Algorithm 3. This function takes as input the group g and the
expected (Wexp) and observed size (Wobs). The core of this algorithm is a loop that
checks if the value of Wexp\Wobs is different from 1. If the ratio is < 1, then it means
that the size of the group is higher than expected. In this case, the algorithm selects
an index in the range of (0, size(g)− 1) according to the deletion strategy REMOVE to
remove the corresponding item from the group. Otherwise, if the ratio is > 1, then
the size of the observed group is lower than expected. In this case, the algorithm
generates a new sample by using the generative strategy GENERATE and adds it to the
group. Finally, the algorithm returns the balanced group when the while condition
becomes true (i.e., Wexp\Wobs = 1).

Algorithm 3: Pseudo-code of BALANCE
Input: (Group g, Expected size Wexp, Observed size Wobs)
Output: Balanced group g

1 while Wexp\Wobs ! = 1 do
/* the group is not balanced */

2 if Wexp\Wobs < 1 then
/* the size of the group is higher than expected, so we

must remove an item from the group */
3 i = REMOVE(0, . . . , size(g)− 1)
4 remove item i from g

5 else if Wexp\Wobs > 1 then
/* the size of the group is lower than expected, so we must

add a new item to the group */
6 i = GENERATE()
7 add item i to g

8 recompute Wobs

9 return g

To better understand the overall process we need to also discuss the two under-
lying removal and generative strategies. The simplest of the two strategies is the
removal one, where the removal candidate must be selected among the samples al-
ready present in the group. The removal strategy implemented in REMOVE function
is typically based on a sampling function that follows a given distribution (e.g. uni-
form).

Chapter 4. Improving Fairness in Binary and Multi-Class Classification 41

Conversely, the generative strategy implemented in the GENERATE function might
be the most tricky since it is responsible for providing new samples used by the sub-
sequent learning task. For instance, a simple approach might be to duplicate one
of the samples already present in the group according to a sampling function that
follows a certain distribution (e.g. uniform). It might be also possible to adopt other
well-known generative approaches in the literature. In this work, we adopt a uni-
form sampling for the removal step while we will test and discuss three generative
approaches (i.e. Uniform Sampling, SMOTE and ADASYN) in the experimental sec-
tion 4.3.

4.3 Evaluation

This section describes the experiments we have conducted to evaluate DEMV: Sec-
tion 4.3.1 reports the used experimental setting comprising the selected metrics and
baselines; Section 4.3.2 describes the employed datasets and their characteristics;
Section 4.3.3 reports on the analysis we have performed to select the best instance
generation strategy to be plugged-in DEMV; Section 4.3.4 shows DEMV’s evaluation
results both in multi-class and binary classification; and finally, Section 4.3.5 reports
a description on how to reproduce the performed experiments using the available
code.

4.3.1 Experimental setting

We evaluate DEMV under heterogeneous conditions by applying a set of binary and
multi-class datasets. As a base classifier, we used a Logistic Regression model [53]
since it is very efficient from a computational point of view and natively supports
multi-class classification. In addition, being a white-box method, it is comprehen-
sible and promotes transparency. We also performed some specific experiments
involving more sophisticated classifiers to analyze the impact of DEMV on these
methods. The involved classifiers are Gradient Boosting [142], Support Vector Ma-
chine (SVM) [143], and Neural Network with ReLU activation function [144]. For all
the experiments, we adopt the implementation from the scikit-learn library [145]
with the default hyper-parameters.

For all the experiments, we compute the following metrics on the testing set:

• Absolute Statistical Parity (SP), defined as the absolute value of the original Sta-
tistical Parity from [81]. We normalized this metric to reduce his variability
and better evaluate each method’s performance (i.e., avoid situations in which
we measure values like 0.2 and -0.2 in two different runs, resulting in a mean
of zero with a high standard deviation). The optimal value is zero.

• Disparate Impact (DI) [82], where the optimal value is one. To avoid the occur-
rence of reverse bias (i.e., metric value firmly higher than one), we adopt the
formulation proposed by [146]:

DI = min
(

p(ŷ = 1|s = 1)
p(ŷ = 1|s = 0)

,
p(ŷ = 1|s = 0)
p(ŷ = 1|s = 1)

)
(4.3)

This metric computes the minimum among two formulations of DI: in one,
the unprivileged group (s = 0) is at the numerator, and in the other is at the
denominator. The metric value is between zero and one, where one means
complete fairness.

Chapter 4. Improving Fairness in Binary and Multi-Class Classification 42

• Absolute Average Odds (AO), defined as the absolute value of the original Aver-
age Odds from [83]. We normalized this metric for the same reasons as SP. The
optimal value is zero.

• Zero-one Loss (ZO Loss) [147], where the optimal value is zero.

• Accuracy (Acc) [148], where the optimal value is one.

• Harmonic Mean (H-Mean) [149] of the above metrics. In particular, concerning
the metrics whose optimal value is zero (i.e., SP, AO, and ZO Loss), we before-
hand perform a value’s permutation to have the optimal value equal to one,
and then we compute the H-Mean using these new values. Formally, H-Mean
is computed as follows:

H-Mean =
5

1
(1−|SP|) +

1
(1−|AO|) +

1
(1−|ZOLoss|) +

1
DI +

1
Acc

(4.4)

Table 4.1 shows the list of performed experiments. Specifically, we performed four
main sets of experiments.

TABLE 4.1: Description of the performed experiments

Experiment
Reference
section

Scope Task
Involved
classifier

Number of
sensitive vars

Involved
debiaser methods

1 4.3.3

Comparison of different implementations
of DEMV embedding diverse generative
strategies both in binary
and multi-class classification

Binary and
multi-class

Logistic Regression 2
DEMV Uniform
DEMV Smote
DEMV Adasyn

2 4.3.4

Analyze the behavior exposed
by debiaser methods with sensitive
groups identified by a different number
of sensitive variables

Binary Logistic Regression

1

No one
EG
Grid
Blackbox
DEMV

2

No one
EG
Grid
DEMV

3

No one
EG
Grid
DEMV

3 4.3.4

Analyze the behavior exposed
by debiaser methods with sensitive
groups identified by a different number
of sensitive variables

Multi-class Logistic Regression

1

No one
EG
Grid
Blackbox
DEMV

2

No one
EG
Grid
DEMV

3

No one
EG
Grid
DEMV

4 4.3.4

Analyze the behavior exposed by debiaser
methods involving more sophisticated
classifiers both in binary and multi-class
classification

Binary and
multi-class

Logistic Regressiona

Gradient Boosting
Support Vector Machine
Neural Network

2

No one
EG
Grid
DEMV

a This classifier has not been directly employed in this experiment, but for clearness we report the results obtained in the
previous experiments

The first is the comparison of different implementations of DEMV embedding
diverse generative strategies (see Section 4.3.3). We consider the following three
strategies:

• Random sampling on Uniform Distribution (UNIFORM), where the algorithm du-
plicates an item present in the group with a uniform probability distribution;

• Synthetic Minority Oversampling Technique (SMOTE) from [140];

Chapter 4. Improving Fairness in Binary and Multi-Class Classification 43

• Adaptive Synthetic Sampling Approach (ADASYN) from [141].

This analysis has been performed in binary and multi-class classification tasks on
all the considered datasets considering two sensitive variables and using Logistic
Regression as a classifier.

After identifying and settling on the best generation strategy, we compare DEMV
with the selected baselines by performing three main sets of experiments (refer to
Section 4.3.4). Experiments two and three in Table 4.1 are focused on analyzing the
behavior exposed by debiaser methods with sensitive groups identified by one, two,
and three sensitive variables. Experiment two focuses on binary classification task
(see Subsection 4.3.4), while experiment three focuses on multi-class classification
task (see Subsection 4.3.4). In both these experiments, we employed a Logistic Re-
gression model as a classifier. To have a more concrete representation of the behavior
of DEMV and the other baselines, at the end of Section 4.3.4 we also report a compar-
ison of normalized confusion matrices for the privileged and unprivileged groups
of a particular dataset.

Finally, experiment four in Table 4.1, is devoted to analyzing the behavior ex-
posed by debiaser methods involving more sophisticated classifiers: Gradient Boost-
ing [142], Support Vector Machine (SVM) [143], and Neural Network with ReLU ac-
tivation function [144]. Since these models are more complex from a computational
point of view, this last experiment has been performed in binary and multi-class
classification tasks on a reduced but heterogeneous data set considering the two es-
tablished sensitive variables (see Subsection 4.3.4).

In all the experiments (with the exception of experiment one) we compare with
the following baselines:

• a biased classifier, where no debiasing method is applied, identified in the fol-
lowing by No one;

• the Exponentiated Gradient (EG) and Grid Search (Grid) in-processing methods
from [88];7

• the Blackbox post-processing method from [89].8 This method has been em-
ployed only in analyses with one sensitive variable since, by the time of this
paper, it does not support multiple sensitive variables.

Concerning Exponentiated Gradient and Grid Search, in agreement with the doc-
umentation available online [150], we used the Absolute Statistical Parity and the
Zero-one Loss as constraints for binary and multi-class problems, respectively. In-
stead, Blackbox does not require a specific configuration of the hyperparameters.

For all the experiments shown in Table 4.1, we follow a 10-fold cross-validation
[151], repeated 30 times for those methods that expose a stochastic behavior (i.e.,
DEMV) as depicted in Figure 4.3. In particular, to better reproduce a production
scenario, we apply DEMV only on the training set and train the Logistic Regression
classifier using the balanced dataset. Then, we predict the labels using the original
biased testing set and compute the metrics described above. In addition, since the
balancing of the groups has a stochastic behavior, for each train-test fold, we repeat
the aforementioned process 30 times so that we can investigate how the removal

7The adopted implementation of Exponentiated Gradient and Grid Search methods are available
on the Fairlearn library [28]

8The considered Blackbox implementation is available at the following link: https://github.com/
scotthlee/fairness

https://github.com/scotthlee/fairness
https://github.com/scotthlee/fairness

Chapter 4. Improving Fairness in Binary and Multi-Class Classification 44

Repeat 30 times

Apply
DEMV

Train
LogReg

Predict
Label

Compute
Metrics

Dataset

10-fold

Test (10%)

Train (90%
)

Computed
Metrics

FIGURE 4.3: Evaluation procedure of DEMV for each train-test fold

or duplication of different items can influence the accuracy and the fairness of the
classifier.

In all the performed experiments, we report the mean and standard deviation of
all the metrics calculated over all the involved datasets. In the representation of such
metrics, we use bar plots where larger bars depict the mean of the metrics, and thin
bars show their standard deviation. In representing plots, we distinguish between
metrics whose optimal value is 0 (shown on the left side of the figures) and metrics
whose optimal value is 1 (reported on the right side of the figures).

4.3.2 Employed datasets

The experiments are conducted by employing nine well-known datasets (3 for the
binary classification and 6 for the multi-class task) from the Bias and Fairness liter-
ature. For each dataset, we consider sensitive groups identified by three sensitive
variables: two variables are the ones established as sensitive variables by the litera-
ture, while the third one is selected for each dataset, among the variables that could
create discrimination, like age, education, and so on. Note that the PARK dataset
has been excluded by the analysis with three sensitive variables because it does not
have a third variable suitable for discrimination.

Table 4.2 depicts the descriptive statistics for the employed datasets. Concerning
the sensitive variables, we highlight in bold the two ones established as sensitive by
the literature. In the following, it is provided a brief description of the 9 considered
datasets.

1. Adult Income (ADULT) [152]: This binary dataset comprises 30,940 items by
102 features (one-hot encoded). The goal is to predict if a person has an income
higher than 50k a year. This information is represented by the income variable.
The protected attributes are sex, and race and the unprivileged group is black
women (items with sex and race equal to zero). In the analysis with three
sensitive variables, we also introduced the bachelor variable, indicating if a
person has a bachelor’s degree or not. In this case, the sensitive group is black
women with no bachelor’s degree. The positive label is high income.

2. ProPublica Recidivism (COMPAS) [153]: This binary dataset is made of 6,167
samples by 399 attributes. The sensitive variables are sex and race. The goal is
to predict if a person will recidivate in the next two years. The favorable label,
in this case, is no, and the unprivileged group is Non-Caucasian men (items with
sex and race equal to zero). In the test with three sensitive variables, we also
introduced the age attribute. In this case, the sensitive group is Non-Caucasian
men with less than 50 years.

Chapter 4. Improving Fairness in Binary and Multi-Class Classification 45

3. German Credit (GERMAN) [154]: This binary dataset classifies people de-
scribed by a set of attributes as good or bad credit risks (credit variable). The
dataset consists of 1,000 instances by 59 features (one-hot encoded). The sen-
sitive variables are sex, and age and the unprivileged group is women with
less than 25 years. The positive label is low credit risk. In the experiment with
three sensitive variables, we also introduced the investment_as_income vari-
able, meaning if a person has more than the 30% of his income invested. In this
case, the sensitive group is women with less than 25 years and with less than 30%
of their income invested.

4. Contraceptive Method Choice (CMC) [155]: This multi-class dataset com-
prises 1,473 instances and ten columns about women’s contraceptive method
choice (not-use, short-use, and long-use). The sensitive variables are religion
and work. The unprivileged group is Islamic women who do not work (both val-
ues equal one), and the positive label is long-term use. In the analysis with three
sensitive variables, we introduced the education (edu) variable. The sensitive
group, in this case, is Islamic women who do not work and with no education.

5. Communities and Crime (CRIME) [156]: This multi-class dataset is made of
1,994 instances by 100 attributes and contains information about the per-capita
violent crimes in a community (variable ViolentCrimesPerPop). Since the la-
bel is continuous, we transformed it by grouping the values in 6 classes using
equidistant quantiles. Following [157] the sensitive attribute is the percentage
of the black population, but we also considered the ratio of the Hispanic popu-
lation to have two sensitive variables. The unprivileged group is communities
with a high percentage of both black and Hispanic people (both variables equal to
1), and the positive label is 100 (class of low rate of crimes). In the experiment
with three sensitive variables, we also introduced the MedRent variable, show-
ing the average price of rents in a community. In this case, the unprivileged
group is communities with a high percentage of black and Hispanic people and a low
cost of the rent.

6. Drug Usage (DRUG) [158]: This multi-class dataset has 1,885 instances and 15
attributes about the frequency of drugs consumption (variable y). The classes
are never used, not used last year, and used last year. The sensitive variables are
race and gender and the unprivileged group are white women (race equal to
one and gender equal to zero). The positive label is never used. In the test
with three sensitive variables, we also used the age variable. In this case, the
sensitive group is white women less than 50 years.

7. Law School Admission (LAW) [74]: This multi-class dataset comprises 20,694
samples by 14 attributes and contains information about the bar passage data
of Law School students. We grouped the continuous label (GPA) in 3 groups
using equidistant quantiles. The sensitive variables are race and gender and
the unprivileged group are black women (both variables equal to one), and the
positive label is 2 (class of high scores). In the analyses with three sensitive
variables, we also introduced the age variable. In the experiments with three
sensitive variables, we also used the age variable. In this case, the unprivileged
group is black women with less than 61 years.

8. Parkinson’s Telemonitoring (PARK) [159]: This multi-class dataset comprises
5875 items and 19 features about Unified Parkinson’s Disease Rating Scale (UP-
DRS) score classification (variable score_cut). The classes are Mild, Moderate

Chapter 4. Improving Fairness in Binary and Multi-Class Classification 46

TABLE 4.2: Descriptive statistics for the employed Datasets (bold-
face are highlighted the protected variables established in the original

dataset)

Adult Compas German CMC Crime Drug Law Park Wine

Scope Social Justice Social Social Justice Social Education Health Food

Instances 30,940 6,167 1,000 1473 1,994 1,885 20,427 5,875 6,438

Features 102 399 59 10 100 15 14 19 13

Classes 2 2 2 3 6 3 3 3 4

Positive
label

high
income no low-credit

risk
long-term

use
100

(low percentage class)
never
used

2
(high scores class) mild high

quality

Sensitive
variables

sex
race

bachelors

sex
race
age

sex
age

investment

religion
work
edu

black
hisp

Medium Rent

race
gender

age

gender
race
age

age
sex

type
alcohol
density

Percentage
of sensitive
group with
two sensitive vars

5.02% 54.71% 10.50% 64.83% 23.62% 45.78% 8.42% 39.45% 11.40%

and Severe. The sensitive variables are sex and age and the unprivileged group
are males with more than 65 years (age equal to one and sex equal to zero).
Since this dataset does not have a third variable suited for identifying sensi-
tive groups, we used it only in the experiments with one and two sensitive
variables.

9. Wine Quality (WINE) [160]: This multi-class dataset comprises 6,438 instances
and 13 attributes about wine quality (variable quality). The classes are four
increasing values indicating quality (the higher, the better). The sensitive at-
tributes are the wine’s color (type variable) and the alcohol percentage lower
or higher than 10 (alcohol variable). The unprivileged group is white wine with
an alcohol percentage ≤ 10, and the positive label is 6 (high quality). In the exper-
iment with three sensitive variables, we also introduced the density variable.
In this case, the unprivileged group is white wine with an alcohol percentage ≤ 10
and with a density less than 1.1%.

4.3.3 Selection of the best generative strategy

In this section, we show the experiments made to select the best instance generation
strategy to plug-in in DEMV. As described in section 4.3.1, we consider the follow-
ing generation strategies: Uniform sampling, SMOTE, and ADASYN. We perform
the comparison with both binary and multi-class datasets using, for each dataset,
sensitive groups identified by the two sensitive variables specified in literature. For
the considered metrics (i.e., the ones introduced in section 4.3.1), we report in Ap-
pendix A.1 the tables showing the detailed values calculated. While in this section
we show their mean and standard deviation calculated over all the datasets.

The aggregated metrics for multi-class datasets are shown in Figure 4.4. From
this first analysis, Uniform sampling and ADASYN give similar results in fairness
and effectiveness, while SMOTE behaves worse.

Figure 4.5 confirms that also in the case of binary classification, the Uniform sam-
pling and ADASYN have comparable performances concerning effectiveness and
fairness.

Since both the Uniform sampling and ADASYN generative strategies expose sim-
ilar performance in terms of the classifier’s fairness and effectiveness, we decide to
analyze their computational performances in order to select the best and most effi-
cient strategy to embed in DEMV. In particular, we focused on their execution time

Chapter 4. Improving Fairness in Binary and Multi-Class Classification 47

Statistical Parity Equalized Odds Zero One Loss
0.0

0.1

0.2

0.3

0.4

Methods
DEMV Uniform DEMV Smote DEMV Adasyn

(A) Metrics whose best value is zero

Disparate Impact Accuracy
0.0

0.2

0.4

0.6

0.8

Methods
DEMV Uniform DEMV Smote DEMV Adasyn

(B) Metrics whose best value is one

FIGURE 4.4: Comparison of generation strategies of DEMV for multi-
class classification with two sensitive variables

Statistical Parity Equalized Odds Zero One Loss
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Methods
DEMV Uniform DEMV Smote DEMV Adasyn

(A) Metrics whose optimal value is zero

Disparate Impact Accuracy
0.0

0.2

0.4

0.6

0.8

Methods
DEMV Uniform DEMV Smote DEMV Adasyn

(B) Metrics whose optimal value is one

FIGURE 4.5: Comparison of generation strategies of DEMV for binary
classification

(expressed in seconds) that we report in figure 4.6. This experiment has been con-
ducted on a MacBook Air M1 2020 with 16 GB of RAM.

The results show that DEMV implementing ADASYN takes much more time for
completion, especially in larger datasets, while DEMV with Uniform always takes a
reasonable execution time.

Considering all the analysis made, we adopt the Uniform sampling as the gen-
eration strategy to compare against the baselines because the obtained metrics are
comparable to ADASYN and its execution time is lower.

4.3.4 DEMV evaluation in classification tasks

This section presents the quantitative results of the DEMV’s evaluation. We compare
the performance of DEMV with the selected baselines shown in Section 4.3.1.

Even if DEMV is a debiaser for the multi-class classification problem, we decided
to evaluate it also in binary classification problems to identify its potentialities in this
scenario (see Section 4.3.4). However, since the binary classification task is not the
primary scope of our work, we decided for readability to show, for each method, the

Chapter 4. Improving Fairness in Binary and Multi-Class Classification 48

Cmc Crime Drug Law Park Wine
Datasets

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ex
ec

ut
io

n
tim

e
(s

)

Methods
DEMV Uniform DEMV Adasyn

FIGURE 4.6: Execution time in seconds of DEMV Uniform and DEMV
Adasyn in multi-class classifications tasks

variation of H-Means at the increasing of sensitive variables. For interested readers,
detailed results are reported in the appendix A.2.

In Section 4.3.4, we present the DEMV evaluation with multi-class classification
tasks. In this case, we report the mean and standard deviation of each measure
described in Section 4.3 using the bar plots. Then, as an overall view, we show
the variation of each method’s H-Mean at increasing sensitive variables. Detailed
metrics for each dataset are provided through tables in Appendix A.3.

Finally, in both binary and multi-class classification scenarios:

• For each dataset, the variation of H-Means, at the increasing number of sen-
sitive variables is reported using line plots in which each line identifies one
method. We recall that since the Blackbox algorithm does not support multiple
sensitive variables, it has been applied only in the experiments involving sen-
sitive groups identified by one sensitive variable, so it is represented as a point
in such plots;

• Each dataset has two sensitive variables. To run the experiment with one sen-
sitive variable, we averaged the results of two independent experiments, one
for each sensitive variable;

• It is reported the statistical significance of all experiments computed using the
non-parametric version of the ANOVA test in each analysis [161]. This test
checks for the null hypothesis that all groups have the same mean; if the prob-
ability value (p-value) is less than 0.05, the test rejects the null hypothesis, which
means that the groups have a different mean value. The ANOVA tables show-
ing the test results are shown in Appendix A.4 as well.

Comparison in the binary classification task

In this section, we compare DEMV with the other baselines in a binary classification
context. It is worth noting that, in the context of binary classification with one sen-
sitive variable, DEMV coincides with the original Sampling method [86] it derives
from.

Chapter 4. Improving Fairness in Binary and Multi-Class Classification 49

1 2 3
Number of sensitive features

0.0

0.2

0.4

0.6

0.8

H
ar

m
on

ic
 m

ea
n

Adult

1 2 3
Number of sensitive features

0.0

0.2

0.4

0.6

0.8

H
ar

m
on

ic
 m

ea
n

German

1 2 3
Number of sensitive features

0.5

0.6

0.7

0.8

H
ar

m
on

ic
 m

ea
n

Compas

No one EG Grid Blackbox DEMV

FIGURE 4.7: Comparison of overall H-Mean at different number of
sensitive variables for binary classification datasets

The results of the experiments are reported in Figure 4.7. As reported in the
figure, DEMV (represented with the red line) better mitigates the bias with an arbi-
trary number of sensitive variables, producing results that are generally competitive
and even better when more than two variables are considered. A closer analysis
lets us notice that EG outperforms the other methods when the number of sensitive
variables is one or two. At the same time, it dramatically fails when three sensitive
variables are considered. Blackbox method (reported by a single triangle in corre-
spondence to one variable) is a good performer only when one sensitive variable is
needed. In contrast, its adoption will not be applicable in cases where more sensitive
variables must be considered.

The conducted ANOVA test, whose detailed results are reported in the Appendix
A.4, confirms the statistical significance of all the experiments made in case of the
binary classification task.

TABLE 4.3: Overall H-Mean of all methods with different sensitive
variables in the binary classification context

Sensitive
variables

Methods

No one Blackbox EG Grid DEMV

1 0.648 ± 0.034 0.835 ± 0.031 0.835 ± 0.048 0.761 ± 0.056 0.777 ± 0.036
2 0.558 ± 0.09 - 0.775 ± 0.077 0.197 ± 0.342 0.723 ± 0.072
3 0.485 ± 0.115 - 0.454 ± 0.081 0.486 ± 0.243 0.651 ± 0.111

To give an overall view of the performances of each method, we provide a syn-
thetic version of the above results in Table 4.3 where, for each method, we report the
average of the H-Mean computed overall for the considered datasets. This summary
confirms what we observed in the details above; that is, in binary classification with
one sensitive variable, Blackbox and EG perform similarly. EG also behaves well in
case of two variables. Finally, DEMV produces competitive results with one or two
sensitive variables while outperforming the other baselines when three variables are
needed. However, no clear winner can be picked out of the shelf, and more evalu-
ation should be provided to determine which method to apply in different settings,
including dataset characteristics. In addition, a quality that can be decisive in select-
ing the best method is the computational complexity, which we will consider in the
future for a better evaluation of DEMV.

Chapter 4. Improving Fairness in Binary and Multi-Class Classification 50

Comparison in the multi-class classification task

In this subsection, we report the results of the experiments conducted in the context
of multi-class classification. The experiment’s results are reported in Figure 4.8 and

Statistical Parity Equalized Odds Zero One Loss
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Metrics whose optimal value is zero

Disparate Impact Accuracy
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Metrics whose optimal value is one

Methods
No one E.G. Grid Blackbox DEMV

(A) Application with one sensitive variable

Statistical Parity Equalized Odds Zero One Loss
0.0

0.1

0.2

0.3

0.4

0.5

Metrics whose optimal value is zero

Disparate Impact Accuracy
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Metrics whose optimal value is one

Methods
No one E.G. Grid DEMV

(B) Application with two sensitive variables

Statistical Parity Equalized Odds Zero One Loss

0.0

0.2

0.4

0.6

0.8

Metrics whose optimal value is zero

Disparate Impact Accuracy
0.0

0.2

0.4

0.6

0.8

Metrics whose optimal value is one

Methods
No one E.G. Grid DEMV

(C) Application with three sensitive variables

FIGURE 4.8: Comparison of DEMV with the baselines in multi-class
classification

Figure 4.9. The former reports the mean and the standard deviation of the metrics
computed by each method on overall datasets, distinguishing among the usage of
one (a), two (b), and three (c) sensitive variables. The latter instead, provides a dif-
ferent view, and for each dataset, it reports the values of H-Mean for each method at
the increasing of sensitive variables.

In particular, Figure 4.8a focuses on the experiments involving one sensitive vari-
able. The high standard deviation of all metrics is explained by the fact that the

Chapter 4. Improving Fairness in Binary and Multi-Class Classification 51

1 2 3
Number of sensitive features

0.575

0.600

0.625

0.650

0.675

0.700

H
ar

m
on

ic
 m

ea
n

cmc

1 2 3
Number of sensitive features

0.2

0.3

0.4

0.5

0.6

H
ar

m
on

ic
 m

ea
n

crime

1 2 3
Number of sensitive features

0.3

0.4

0.5

0.6

0.7

H
ar

m
on

ic
 m

ea
n

drug

1 2 3
Number of sensitive features

0.55

0.60

0.65

0.70

0.75

H
ar

m
on

ic
 m

ea
n

law

1 2
Number of sensitive features

0.5

0.6

0.7

H
ar

m
on

ic
 m

ea
n

park

1 2 3
Number of sensitive features

0.4

0.5

0.6

0.7

H
ar

m
on

ic
 m

ea
n

wine

No one EG Grid Blackbox DEMV

FIGURE 4.9: Comparison of overall H-Mean at different number of
sensitive variables for multi-class classification datasets

metrics are here calculated putting together the results of two separate experiments.
From the figure, we can see that, on average, DEMV overcomes all the baselines.
In addition, we observe that DEMV is the method performing in a more stable and
coherent way. This is highlighted by an overall lower standard deviation for all
metrics.

The performances of DEMV in case of one variable are confirmed by figure 4.9,
where it can be seen that DEMV overcomes the baselines in all datasets with the only
exception of CMC (in which the best method is Grid), and Wine (in which the best
method is Blackbox).

More detailed results are reported in table A.9 in the appendix A.3.
Finally, the ANOVA test (whose detailed results are reported in table A.16.a of

the appendix A.4) confirms the statistical significance of the experiments with the
exception of the metrics AO, which has a p-value of 0.262. The fact that the obser-
vations of AO are not statistically significant can be explained by the high standard
deviation of such metric in Grid and especially in Blackbox.

Figure 4.8b reports the results of the experiments with sensitive groups identified
by two sensitive variables. As before, DEMV overcomes all the other baselines in all
the involved datasets, and its stability is confirmed by an overall lower standard de-
viation. Figure 4.9 shows that also in this context, DEMV outperforms the baselines
in all datasets. Detailed results in the case of two sensitive variables are reported in
table A.10 of the appendix A.3.

The ANOVA test confirms the statistical relevance of all the results (see table
A.16.b in the appendix A.16).

The above considerations are also confirmed in the case of three involved sen-
sitive variables. The results are reported in figure 4.8c and in table A.11 of the ap-
pendix A.3. We recall that the Park dataset has not been used in this experiment
since it does not have a third variable suitable to be treated as sensitive.

In this case, from figure 4.9 it can be seen that Grid performs slightly better in
CMC (with a delta of H-Mean of about 0.01 points) and Wine (with a delta of 0.005).

Chapter 4. Improving Fairness in Binary and Multi-Class Classification 52

As for the other two experiments, DEMV performs more consistently with an overall
standard deviation lower than the different baselines. Again, the ANOVA test con-
firms the statistical significance of the experiments (see table A.16.c in the appendix
A.16), with the only exception of AO metrics (with a p-value of 0.27) which has a
high variability especially with EG and with the biased classifier (identified by No
one label) in the figure.

TABLE 4.4: Overall H-Mean of all methods with different sensitive
variables in the multi-class classification context

Sensitive
variables

Methods
No one Blackbox EG Grid DEMV

1 0.568 ± 0.085 0.479 ± 0.211 0.582 ± 0.09 0.566 ± 0.121 0.682 ± 0.072
2 0.493 ± 0.16 - 0.505 ± 0.16 0.58 ± 0.063 0.677 ± 0.081
3 0.486 ± 0.135 - 0.49 ± 0.128 0.529 ± 0.182 0.646 ± 0.08

As for the experiments involving binary classification datasets, in order to have
a complete, concise overview, in table 4.4, we report the overall H-Mean of all the
methods in the three performed experiments over all the datasets. Note that DEMV
generally overcomes the other baselines in all the explored contexts, increasing the
H-Mean by up to 0.2 points with respect to the biased classifier (i.e., No one in the
table) in the experiments with two and three sensitive variables.

Finally, to have a more concrete representation of the behavior of all the analyzed
methods, in figure 4.10 we report a comparison of the normalized confusion matri-
ces [162] for the privileged and unprivileged (i.e., biased) groups of the Drug dataset
with two sensitive variables. We decided to choose the Drug dataset for this experi-
ment since it is among the ones having a high bias and showing better the inequality
among the privileged and unprivileged groups (confirmed also by the values of the
fairness metrics for the biased classifier shown in table A.10 of appendix A.3). In
all the matrices, we highlight in red and in boldface the predicted positive label
(i.e., never), which identifies the column of the matrix affected by bias (highlighted
in red as well). In particular, figure 4.10a shows the confusion matrices of the bi-
ased classifier. From the picture, it can be seen how the probability of the privileged
group having a predicted positive label (i.e., column corresponding to never) is much
higher than the unprivileged group. The confusion matrices related to EG and Grid
(figures 4.10b and 4.10c respectively) do not differ much from the ones of the biased
classifier, meaning that these two methods are not able to improve the fairness of the
classifier. Instead, in figure 4.10d, it can be seen how DEMV is able to balance these
two matrices, and the probability of having the positive label predicted is almost the
same for the two groups, meaning that the fairness of the classifier has increased.

Comparison using more sophisticated classifiers

In this subsection, we report the results of the experiments conducted in binary and
multi-class classification contexts using more complex classifiers. As already de-
scribed in section 4.3.1, the employed classifiers are: Gradient Boosting, Support Vec-
tor Machine (SVM), and Neural Network with ReLU activation function. Since these
models are more complex from a computational point of view, we performed these
experiments on a reduced, but heterogeneous set of data using sensitive groups
identified by two sensitive variables. The selected datasets are Adult (binary large

Chapter 4. Improving Fairness in Binary and Multi-Class Classification 53

never not last
 year

last year

Predicted label

never

not last
 year

last year
Tr

ue
 la

be
l

0.32 0.45 0.24

0.05 0.47 0.47

0.01 0.07 0.92

Unprivileged group

never not last
 year

last year

Predicted label

never

not last
 year

last year

Tr
ue

 la
be

l

0.64 0.21 0.14

0.42 0.33 0.25

0.07 0.14 0.79

Privileged group

0.2

0.4

0.6

0.8

0.2

0.4

0.6

(A) Biased classifier

never not last
 year

last year

Predicted label

never

not last
 year

last year

Tr
ue

 la
be

l

0.36 0.41 0.24

0.08 0.47 0.46

0.01 0.08 0.92

Unprivileged group

never not last
 year

last year

Predicted label

never

not last
 year

last year

Tr
ue

 la
be

l

0.62 0.24 0.13

0.38 0.39 0.23

0.07 0.12 0.81

Privileged group

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

(B) EG

never not last
 year

last year

Predicted label

never

not last
 year

last year

Tr
ue

 la
be

l

0.49 0.31 0.21

0.21 0.37 0.42

0.02 0.09 0.88

Unprivileged group

never not last
 year

last year

Predicted label

never

not last
 year

last year

Tr
ue

 la
be

l

0.58 0.27 0.15

0.39 0.31 0.30

0.08 0.14 0.79

Privileged group

0.2

0.4

0.6

0.8

0.2

0.4

0.6

(C) Grid

never not last
 year

last year

Predicted label

never

not last
 year

last year

Tr
ue

 la
be

l

0.57 0.25 0.17

0.24 0.41 0.35

0.02 0.09 0.88

Unprivileged group

never not last
 year

last year

Predicted label

never

not last
 year

last year

Tr
ue

 la
be

l

0.55 0.25 0.21

0.33 0.37 0.30

0.07 0.10 0.83

Privileged group

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

(D) DEMV

FIGURE 4.10: Normalized confusion matrices of privileged and un-
privileged groups for each baseline on Drug dataset

dataset), COMPAS (binary small dataset), CMC (multi-class small dataset), and Law
(multi-class large dataset).

Finally, considering the debaiser approaches, it is worth noting that EG and Grid
can not be applied when a Neural Network model is used as a classifier. In fact, EG
and Grid apply arbitrary weights to the instances in order to remove bias, but Neural
Networks, by their nature, do not allow the specification of weights to the instances.
For this reason, in the experiments involving Neural Networks, we only compared
the performance of the original classifier with the performance of the classifiers after
the application of DEMV.

Chapter 4. Improving Fairness in Binary and Multi-Class Classification 54

TABLE 4.5: Overall H-Mean of all methods with different classifiers
in the binary classification context

Classifier
Methods

No one EG Grid DEMV

Logistic
Regression

0.558 ± 0.09 0.775 ± 0.077 0.197 ± 0.342 0.723 ± 0.072

Gradient
Boosting

0.588 ± 0.19 0.476 ± 0.383 0.582 ± 0.228 0.724 ± 0.057

SVM 0.57 ± 0.201 0.554 ± 0.238 0.59 ± 0.205 0.721 ± 0.066

Neural
Network

0.584 ± 0.202 - - 0.69 ± 0.127

Concerning binary classification, table 4.5 reports the overall H-Mean of all the
baselines for each involved classifier overall the involved datasets9, detailed results
are reported in the appendix A.2 as well. Note how, differently from the experiments
with a Logistic Regression classifier, DEMV overcomes the other baselines in all of
the performed analyses, with a delta up to around 0.2 points in the case of EG with
a Gradient Boosting classifier. The ANOVA test, whose results are reported in the
appendix A.4, confirms the statistical significance of the results.

Concerning multi-class classification, figure 4.11 reports the mean and the stan-
dard deviation of all the metrics computed over all datasets. In particular, figure
4.11a shows the results of the experiments involving the Gradient Boosting classifier.
In this context, DEMV outperforms the baselines under the SP and AO definitions
of fairness, while it almost equals EG under the DI definition of fairness. More de-
tailed results are reported in the table A.12 of the appendix A.3. The ANOVA test
confirms the statistical significance of this experiment, with the only exception of
Zero One Loss which has a p-value of 0.732 (see table A.18.a of the appendix A.4).
Figure 4.11b, reports instead the results of the experiments involving Support Vec-
tor Machines. In this context, it can be seen how DEMV overcomes the baselines
under all the considered definitions of fairness, keeping an accuracy level almost
equal to the original biased classifier. Detailed results are reported in table A.13 of
the appendix A.3 as well. Also in this case, the ANOVA test confirms the statistical
significance of the results (see table A.18.b of the appendix A.4). Finally, figure 4.11c
details the results of the experiments performed with Neural Networks. We recall
that in this case EG and Grid can not be applied, hence we compared DEMV only
with the biased classifier. Also, in this case, DEMV is able to improve the fairness
of the classifiers, keeping an almost unchanged level of accuracy, and more detailed
results are reported in table A.14 of the appendix A.3. The ANOVA test confirms the
statistical significance of the results as well (see table A.18.c of the appendix A.4).

Table 4.6 reports the overall H-Means of all the methods for each classifier overall
the selected datasets. It can be seen how DEMV generally overcomes the other base-
lines with all the selected classifiers with a delta up to around 0.3 points concerning
SVM with Grid method.

9To have a better overall view, we also reported the measurements computed with a Logistic Re-
gression classifiers, which corresponds to the measures of table 4.3 with two sensitive variables.

Chapter 4. Improving Fairness in Binary and Multi-Class Classification 55

Statistical Parity Equalized Odds Zero One Loss
0.0

0.1

0.2

0.3

0.4

Metrics whose optimal value is zero

Disparate Impact Accuracy
0.0

0.2

0.4

0.6

0.8

Metrics whose optimal value is one

Methods
No one E.G. Grid DEMV

(A) Application with Gradient Boosting

Statistical Parity Equalized Odds Zero One Loss
0.0

0.1

0.2

0.3

0.4

0.5

Metrics whose optimal value is zero

Disparate Impact Accuracy
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Metrics whose optimal value is one

Methods
No one E.G. Grid DEMV

(B) Application with Support Vector Machines

Statistical Parity Equalized Odds Zero One Loss
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Metrics whose optimal value is zero

Disparate Impact Accuracy
0.0

0.2

0.4

0.6

0.8

Metrics whose optimal value is one

Methods
No one DEMV

(C) Application with Neural Networks

FIGURE 4.11: Comparison of DEMV with the baselines in multi-class
classification using other classifiers

4.3.5 Reproducibility of the experiments

Nowadays, ensuring that the proposed methods and their corresponding results are
sound and reliable is one of the challenges for research in machine learning. To en-
sure that the findings are valid, it is essential for the experiments to be repeatable
and to yield results and conclusions comparable or identical to the originally re-
ported ones [163]. For this reason, we choose to release the full code of the DEMV
algorithm along with the replication package of all the performed experiments. This
section is dedicated to describing how to use such code in order to reproduce the
experiments described in the previous sections. The repository also includes a spec-
ification of all the Python dependencies required for a correct execution of the code,

Chapter 4. Improving Fairness in Binary and Multi-Class Classification 56

TABLE 4.6: Overall H-Mean of all methods with different classifiers
in the multi-class classification context

Classifier
Methods

No one EG Grid DEMV

Logistic
Regression

0.493 ± 0.16 0.505 ± 0.16 0.58 ± 0.063 0.677 ± 0.081

Gradient
Boosting

0.653 ± 0.061 0.72 ± 0.049 0.607 ± 0.121 0.729 ± 0.018

SVM 0.603 ± 0.069 0.613 ± 0.054 0.392 ± 0.127 0.716 ± 0.012

Neural
Network

0.656 ± 0.038 - - 0.728 ± 0.016

which can be installed using anaconda10 or pip11.
The program that must be called to replicate the experiments is generatemetrics.py,

which is responsible for generating the measures computed and aggregated in all
the experiments of section 4.3. Noticing that the code to reproduce the plots pre-
sented in this paper has not been included in the replication package, but can be
easily implemented using the metrics generated from the given program. The code
generatemetrics.py can be invoked from the command line through the Python
interpreter in the following way:

1 $ python generatemetrics.py <DATASET > <METHOD > <NUMBER_OF_FEATURES >
--sensitivefeature <SENSITIVE FEATURE?> --classifier <

CLASSIFIER?> --cm <CM?>

and accepts the following parameters (please refer also to the README of the
GitHub repository for a more precise description of these parameters):

• DATASET: the dataset on which apply the experiments. Can be one of the
datasets described in section 4.3.2.

• METHOD: debiaser method to use. Can be one of the debiaser methods em-
ployed in this paper or biased in case of no methods.

• NUMBER OF FEATURES: number of sensitive variables to identify the sensi-
tive groups. Can be an integer up to 3.

• SENSITIVE FEATURE: optional parameter to specify the sensitive variables
for the identification of the sensitive groups in case NUMBER OF FEATURES is
equal to one or two. To ensure that the selected variables are truly sensitive,
they must be among the three sensitive variables defined for each dataset in
section 4.3.2.

• CLASSIFIER: optional parameter to specify a classification method. Can be
one of the classifiers employed in the experiments of this paper. The default is
the Logistic Regression classifier.

• CM: optional boolean value to plot the confusion matrices of the two sensitive
groups. Default is false.

10https://www.anaconda.com/
11https://pypi.org/project/pip/

https://www.anaconda.com/
https://pypi.org/project/pip/

Chapter 4. Improving Fairness in Binary and Multi-Class Classification 57

The following command can also be executed to receive help and information on the
requested parameters:

1 $ python generatemetrics.py -h

The execution of this script will produce a .csv file containing all the measures
described in section 4.3.1 for each train-test fold. We like to remark that, in case of
DEMV, the number of measures will be equal to 30 times the number of train-test
folds (see the description of the experiment setting in section 4.3.1).

To reproduce the experiments of section 4.3.3, the script can be called passing as
input any of the involved dataset, a number of sensitive variables equal to 2, and
UNIFORM, SMOTE or ADASYN as debiaser method. For instance:

1 $ python generatemetrics.py cmc uniform 2 --sensitivevariable
religion ,work

will produce the metrics of the CMC dataset using the DEMV Uniform debiaser
strategy. Aggregating the results of the execution of this script for all of the involved
datasets and all of the analysed generation strategies makes possible to reproduce
the experiments and charts shown in the section 4.3.3.

Similarly, it is possible to reproduce the experiments of section 4.3.4 by running
generatemetrics.py on all the combinations of datasets, methods, number of sen-
sitive variables and classification methods and then aggregating the results. For
instance, the following command:

1 $ python generatemetrics.py adult eg 3 --classifier gradient

will generate the metrics for the Adult dataset with three sensitive variables using
the EG debiaser method and the Gradient Boosting classifier.

Finally, confusion matrices for the privileged and unprivileged groups can also
be created using this script. For instance, the command:

1 $ python generatemetrics.py crime uniform 3 --cm

will generate the confusion matrices of the Crime dataset for the privileged and un-
privileged groups.

It is also possible to refer to the README file on the GitHub repository for a more
complete description of the method and the parameters.

In addition to the source code, DEMV is also freely available as a ready-to-use
package in the PyPI repository12 and it is provided as a ready-to-use method into
the SoBigData RI [45].

4.4 Discussion

In this section, we discuss the results of the experiments conducted in section 4.3 by
referring to the research questions highlighted at the beginning of this chapter.

4.4.1 RQ1: Evaluation of existing approaches

From the experiments conducted in section 4.3, we have seen that almost all the
baselines can improve fairness in the binary classification context and classification
problems involving one sensitive variable. However, no baselines can consistently
handle bias in the multi-class classification domain with multiple sensitive variables

12https://pypi.org/project/demv/

https://pypi.org/project/demv/

Chapter 4. Improving Fairness in Binary and Multi-Class Classification 58

either because they do not support it (like in the case of Blackbox) or because they
perform very poorly (like in the case of EG and Grid). More specifically, the strengths
and weaknesses we have observed for each baseline in the performed experiments
are as follows:

• EG. It can improve fairness in the context of binary classification with very
relevant results. It has much more difficulty in improving fairness in multi-
class classification. This weakness might be imputed to the constraint metric
suggested by the authors to be used in the case of multi-class classification,
i.e., ZO Loss. In addition, this method is highly influenced by the involved
classification algorithm and can not be applied if the employed classifier is a
Neural Network.

• Grid. His performances are strictly related to the dataset and the search space
size. Since, in our experiments, we always used a grid size of 20 (the default
value of the adopted implementation), this method performed well with some
datasets and worse with others in which a larger search space was needed.
This results in a very high variability of the overall obtained metrics. In par-
ticular, our experiments observed that Grid performs well with the CMC and
Wine multi-class datasets. At the same time, in the binary classification task,
the Grid method exposes a higher variability even in the same dataset but
among a different number of sensitive variables. Finally, as for EG, this method
is strongly influenced by the classification algorithm and can not used if the
employed classifier is a Neural Network.

• Blackbox. This method performs well in mitigating bias in binary and multi-
class classification. However, it does not support multiple sensitive variables.
In addition, we observed high variability in the overall metrics that let the
method be considered unstable.

4.4.2 RQ2: Overcoming existing limitations

In this work, we have presented the Debiaser for Multiple Variables (DEMV), which is,
to the best of our knowledge, the first pre-processing approach able to improve fair-
ness both in binary and multi-class classification with multiple sensitive variables.
DEMV generally overcomes the other baselines in binary and multi-class classifi-
cation tasks with one, two, and three sensitive variables. In addition, being a pre-
processing method, DEMV can be applied to a heterogeneous set of classification
methods without impacting or being influenced by their behavior. DEMV is also
the method that performs more consistently in all the experiments, resulting in less
variability of the overall metrics.

4.4.3 RQ3: DEMV instance generation strategy

The generative strategy that must be adopted to rebalance groups in DEMV is Uni-
form sampling. The Uniform generating strategy is preferable from two points of
view: i) it is the best performer (among the other generative strategies) in terms of
fairness and accuracy; ii) its computational complexity is negligible. This approach
has been adopted in DEMV and compared with the other baselines, obtaining excel-
lent results.

Chapter 4. Improving Fairness in Binary and Multi-Class Classification 59

4.4.4 RQ4: Comparison with baseline approaches

The performed experiments showed that DEMV can improve the fairness in binary
and multi-class classification contexts with any number of involved sensitive vari-
ables, keeping a high level of accuracy. In particular, our method overcomes the
other baselines in multi-class classification problems with any number of sensitive
variables. In contrast, as expected, other specifically designed methods may per-
form better in binary classification with one or two sensitive variables. Instead, we
have noticed that when the sensitive variables are more than two, DEMV overcomes
the baselines also in the case of binary classification. In addition, we have shown
how DEMV can consistently improve the fairness of several classification methods
without impacting their behavior, while other debiaser methods behave differently
according to the involved classification method or can not be applied at all (like EG
and Grid with a Neural Network). Finally, we observed that when the size of the
sensitive group is tiny, DEMV has more difficulty improving fairness and finding
the optimal group size. This issue can be explained by the fact that when the group
size is small, the addition or removal of a single item impacts more on the expected
and observed size ratio, so the optimal balancing is more complex or impossible to
achieve.

4.5 Conclusion

We addressed the problem of bias mitigation in the multi-class classification context
by proposing the Debiaser for Multiple Variables, a novel approach extending the work
of [86] to the multi-class classification domain with multiple sensitive variables. To
the best of our knowledge, DEMV is the first pre-processing method able to han-
dle bias in both binary and multi-class classification problems with any number of
sensitive variables. Thus, it can be applied during the feature engineering phase to
mitigate the bias exposed by the dataset.

We have exhaustively evaluated our algorithm by comparing it with three estab-
lished baselines using a heterogeneous set of binary and multi-class datasets, with
a different number of sensitive variables, and by employing a heterogeneous set of
classification methods. In addition, we have also evaluated how different instances
generation strategies can influence the ability of DEMV in improving fairness. The
conducted experiments show that our method is the better choice to adopt in the
multi-class classification context with one, two, or three sensitive variables. Instead,
we noticed how other specifically designed methods might perform better in binary
classification with one and two sensitive variables. However, our method is still the
better solution in binary classification problems with three sensitive variables and,
being a pre-processing method, it can be successfully applied even with classifiers
not supported by other baselines (e.g., Neural Networks).

Finally, we have seen that the Uniform sampling of existing instances is the best
strategy to manipulate groups in terms of accuracy and fairness.

In the future, we want to overcome the current main weakness of DEMV, high-
lighted when the sensitive groups are very small. We will address this issue by
investigating if there are situations that lead to optimal fairness before a complete
balance within the groups. If so, we want to identify further which are the charac-
teristics that lead to these situations. In addition, we want to improve our analysis
by studying the impact of the size of the dataset and the number of attributes that
are not the sensitive variables on DEMV and his behavior. Next, we also want to as-
sess the computational complexity with respect to the other baselines, and we want

Chapter 4. Improving Fairness in Binary and Multi-Class Classification 60

to study the impact that different removal strategies may have during the balancing
procedure and, thus, on the capacity of DEMV to mitigate bias and improve fairness.
Finally, we will study the impact that DEMV has on the fairness of the full pipeline
of recommender systems that embed a multi-class classifier.

61

Chapter 5

Modelling Fairness Concepts and
Metrics

This chapter presents the formal representation of the workflows introduced in Chap-
ter 2 for fairness assessment and to identify the best combination of ML models and
fairness-enhancing methods. We demonstrate how to model the workflow to select
the best ML model and fairness-enhancing method as a Software Product Line (SPL).
In addition, we propose a metamodel to represent the entire fairness assessment
process. These formalisms underpin the development of two low-code approaches,
MANILA [46] and MODNESS [47], which are discussed in Chapter 6.

Referring to the challenges and contributions described in Chapter 1, this chapter
presents the theoretical foundations behind contribution CN2 proposed to address
the challenge CH2.

The chapter is structured as follows: Section 5.1 provides background knowledge
on Model Driven Engineering (MDE) and Feature-Oriented Software Development
(FOSD). Section 5.2 details the modeling of the workflow to evaluate different ML
models and fairness-enhancing method combinations and select the best one. Sec-
tion 5.3 instead introduces the metamodel for fairness assessment. Finally, Section
5.4 wraps up this chapter.

5.1 Background on Software Modeling

5.1.1 Model Driven Engineering

Model Driven Engineering (MDE) is a software development methodology that uses
models as primary artifacts in the software development process [164]. MDE is
based on the principle of separation of concerns, where different aspects of a system
are modeled independently and then integrated to form a complete system. MDE is
widely used in software development to address the complexity of modern software
systems and to improve software quality and maintainability [164].

MDE is based on the concept of models, which are abstract representations of a
system that capture different aspects of that system. Models can be used to describe
the structure, behavior, and properties of a system, and can be used to generate
code, documentation, and other artifacts [164]. Models are typically created using
modeling languages, which provide a set of concepts and notations for describing
the system.

In MDE, models adhere to a hierarchical structure where each model conforms to
a specific meta-model. A meta-model acts as a blueprint, defining the concepts and
relationships that can be utilized across all models derived from it. Specifically, a
meta-model encapsulates all the entities that can be instantiated within a model and

Chapter 5. Modelling Fairness Concepts and Metrics 62

specifies the relationships that can exist among them, such as references, composi-
tions, and extensions [165]. Similar to how objects in Object-Oriented Programming
are instances of a class, models in MDE are instances of a meta-model. These mod-
els can represent various facets of a system, including its structure, behavior, and
properties.

Different technologies can be used to implement MDE, and provide tools and
frameworks for creating, editing, and transforming models. Among those, the Eclipse
Modeling Framework (EMF) is a widely used technology in MDE [165]. The popu-
larity of this technology is enforced by a wide ecosystem of tools and plugins that
support developers in activities such as the creation of Domain Specific Languages
(DSLs) [166] or code generation [167].

The high flexibility and expressiveness of MDE make it a suitable approach for
modeling complex software processes, such as the fairness assessment workflow
discussed in Chapter 2. MDE is particularly well-suited for scenarios involving mul-
tiple stakeholders operating at various levels of abstraction, enabling clear represen-
tation and management of intricate workflows.

A previous work employing MDE for fairness development is FairML, devel-
oped by Yohannis and Kolovos [112]. The authors have first defined a meta-model
to represent scripts for bias mitigation and assessment. Then, they defined a Domain
Specific Language (DSL) to specify such scripts. Finally, from a model defined using
such a DSL, the proposed tool automatically generates a Python script implementa-
tion. However, the proposed approach does not guide the data scientist in selecting
components always leading to an executable experiment. Moreover, it does not al-
low the specification of custom fairness definitions and metrics. With our proposed
approaches, we overcome those limitations.

5.1.2 Feature Oriented Software Development

Feature-Oriented Software Development (FOSD) is a software development method-
ology that focuses on the reuse of software artifacts across multiple software prod-
ucts [48]. FOSD is based on the concept of software product lines (SPL), which are
families of related software products that share a common set of features.

Feature Models are a traditional formalism in FOSD to represent SPL [48]. In-
deed, Feature Models allow the definition of a template for families of software
products with standard features (i.e., components of the final system) and a set of
variability points that differentiate the final systems [48].

Features in the model are organized in a hierarchical, tree-like structure based on
parent-child relationships. These features can be categorized as either mandatory
(i.e., they must be included in the final system) or optional (i.e., their inclusion in
the final system is discretionary) [168]. Sibling features may form an Or-relationship
(i.e., zero or more features can be included) or an Alternative-relationship (i.e., at
most one feature can be included) [168]. Additionally, Cross-tree relationships may
exist between features in different branches of the tree. These relationships are typi-
cally defined using logical propositions [168].

One limitation of traditional Feature Models is that they do not allow associating
attributes with features. This limitation is particularly relevant in the contexts like
the workflow for the evaluation of fairness-enhancing methods, where information
such as the name of the column encoding the label in the dataset or the number of
rounds to perform for cross-validation [151] are essential to generate the code imple-
menting the experiment workflow. To address this limitation, the Extended Feature
Models (ExtFM) formalism has been proposed by the literature [169], [170]. ExtFM

Chapter 5. Modelling Fairness Concepts and Metrics 63

extends the Feature Model formalism by allowing the association of attributes with
features, enabling a more detailed representation of software product lines.

Regarding the adoption of Feature Models to model learning-based systems,
Di Sipio et al. presented LEV4REC, a Feature Model-based application to define
pipelines for the recommender systems domain [171]. The variation points are iden-
tified by all the components needed to implement a recommender system (e.g., the
ML algorithm to use or the Python libraries for the implementation). From a given
specification, the application generates a Python implementation of the modeled
recommender system.

5.2 An Extended Feature Model to Support the Development
of Fair and Effective Learning-Based Systems

In this section, we introduce an Extended Feature Model (ExtFM) that models the
general fairness benchmarking workflow presented in Chapter 2 [46]. The ExtFM
has been implemented using FeatureIDE, an open-source graphical editor which al-
lows the definition of ExtFMs [172].

Figure 5.1 presents a condensed version of the implemented ExtFM.1 The ExtFM
is designed to assist data scientists during the model requirements phase (refer to Fig-
ure 1.1) by guiding the selection of all necessary features for evaluating and identi-
fying the optimal combination of ML models and fairness-enhancing methods.

The ExtFM comprises seven macro features, which are then detailed by chil-
dren’s features. The first mandatory feature is the Dataset. The Dataset has a file
extension (e.g., CSV, EXCEL, JSON, and others) and a Label, which can be Binary or
Multi-Class. The Label feature has two attributes specifying his name and the pos-
itive value (used to compute fairness metrics). The Dataset could also have one or
more sensitive variables that identify sensitive groups subject to unfairness [19]. The
sensitive variables have a set of attributes to specify their name and the privileged
and unprivileged groups [19]. Finally, there is a feature to specify if the dataset only
has positive attributes. This feature has been included to define a cross-tree con-
straint with a scaler technique that requires only positive attributes (see Table 5.1).
All these features are modeled as abstract since they do not have a concrete imple-
mentation in the final experiment.

The next feature is a Data Scaler algorithm, which is not mandatory and can be
included in the experiment to scale and normalize the data before training the ML
model [173]. Different scaler algorithms from the scikit-learn library [145] are listed
as concrete children of this feature.

Furthermore, the model includes a macro feature representing the ML Task to
be performed. This feature is not modeled as mandatory because two fairness-
enhancing methods — Gerry Fair and Meta Fair [174], [175] — integrate a built-in fair
classification algorithm. As a result, if either of these methods is selected, specifying
the ML Task becomes unnecessary. However, to maintain consistency, a cross-tree
constraint has been included to enforce the selection of the ML Task unless one of
these two methods is chosen: ¬ Gerry Fair ∧ ¬ Meta Fair =⇒ ML Task. An ML Task
could be Supervised or Unsupervised. A Supervised task could be a Classification
task or a Regression task and has an attribute to specify the size of the training set.
These two abstract features are then detailed by a set of concrete implementations of
ML methods selected from the scikit-learn library [145]. The Unsupervised learning

1The complete ExtFM is accessible online at https://github.com/giordanoDaloisio/
manila-web/blob/main/fm-full.png

https://github.com/giordanoDaloisio/manila-web/blob/main/fm-full.png
https://github.com/giordanoDaloisio/manila-web/blob/main/fm-full.png

Chapter 5. Modelling Fairness Concepts and Metrics 64

FIGURE 5.1: Short version of the implemented Extended Feature
Model

task could be a Clustering or an Aggregation task. At this stage of the work, these
two features have not been detailed and will be explored in future works.

Next is the macro feature representing the methods to enhance the system’s fair-
ness. This feature is mandatory since a data scientist could simply focus on the
model’s effectiveness without accounting for fairness. Fairness methods can be Pre-
Processing, In-Processing, and Post-Processing. These three features are detailed by

Chapter 5. Modelling Fairness Concepts and Metrics 65

several concrete features representing fairness-enhancing methods. In selecting such
algorithms, we selected methods with a solid implementation, i.e., algorithms inte-
grated into libraries such as AIF360 [27] or Fairlearn [28]. In addition, we included
the DEMV algorithm presented in Chapter 4 [43] for bias mitigation in multi-class
tasks. All these methods have been modeled with an Or-group relationship since
multiple methods could be tested on the same ML model.

The next macro feature represents the metrics used in the experiment. Metrics
are divided among metrics to assess the effectiveness in classification or regression
tasks and metrics for fairness assessment. Each metric category has a set of concrete
metrics selected from the scikit-learn library [145] and the AIF360 library [27]. If the
data scientist is evaluating classification methods, then at least one metric for classi-
fication effectiveness must selected. The same applies to regression tasks. In addi-
tion, if the data scientist is evaluating the model’s fairness, then at least one fairness
metric must be selected. These constraints are formalized by cross-tree relationships
among features (see Table 5.1).

The final mandatory feature pertains to the trade-off strategy used to identify
the optimal ML model and any chosen fairness-enhancing methods. There are two
types of trade-off strategies. The first includes aggregation functions that summarize
metrics using specific calculations, such as median, minimum, or maximum values.
The second type is the Pareto front function, which yields the set of non-dominated
solutions [176].

Finally, there is the optional macro feature identifying the Validation function.
Validation functions are different strategies to evaluate the effectiveness and fairness
of an ML model [151]. Several Validation functions are available as children features,
and there is an attribute to specify the number of groups in case of cross-validation
[151].

Table 5.1 lists the cross-tree constraints among features. These constraints guide
the data scientist through the definition of a complete and correct (i.e., not leading to
execution errors) experimental workflow. They have been derived from an empirical
analysis of methods and metrics provided by the sklearn and aif360 libraries and by
testing all possible combinations of ML models and fairness-enhancing methods.

5.3 A Metamodel for Fairness Assessment

In this section, we introduce a metamodel for fairness assessment based on the key
concepts provided in Chapter 2 [47]. The proposed metamodel allows data scientists
and domain experts to define the bias related to a particular domain and to specify
fairness analyses starting from that definition.

The ground idea behind the proposed metamodel is that a fairness assessment
process can be depicted as a two-layered workflow. First, there is a high-level defi-
nition of bias for a given domain. Next, starting from a high-level definition of bias,
multiple concrete fairness analyses can be defined on a specific dataset using stan-
dard or even custom metrics. Thus, the metamodel can be divided into three related
packages providing the modeling constructs for bias definitions (see Fig. 5.2), fair-
ness analyses specification (see Fig. 5.3), and for the definition of metrics (see Fig.
5.4).2

2A full picture of the metamodel is available online at this link https://github.com/
giordanoDaloisio/MODNESS/blob/main/assets/metamodel.jpg

https://github.com/giordanoDaloisio/MODNESS/blob/main/assets/metamodel.jpg
https://github.com/giordanoDaloisio/MODNESS/blob/main/assets/metamodel.jpg

Chapter 5. Modelling Fairness Concepts and Metrics 66

TABLE 5.1: Extended Feature Model cross-tree constraints

Cross-tree constraints Description

Fairness ⇒ Sensitive Variables If the fairness QA is selected, then the sensitive
variables must be specified

Fairness ⇒ Fairness Metrics If the fairness QA is selected, then at least a
fairness metric must be selected

Multiple Sensitive Var ⇒ ¬ Sampling ∧
¬ Blackbox ∧ ¬ DIR

If multiple sensitive variables are selected, then
disable the fairness enhancing methods not

supporting more than one sensitive variable

MultiClass ⇒ ¬ Reweighing ∧ ¬ DIR ∧
¬ Optimized Preprocessing ∧ ¬ LFR ∧
¬ Adversarial Debiasing ∧ ¬ Gerry Fair ∧
¬ Meta Fair ∧ ¬ Prejudice Remover ∧
¬ Calibrated EO ∧ ¬ Reject Option

If a multi-class label is selected, then disable
the fairness methods not supporting

multi-class classification

Regression ⇒ ¬ PostProcessing ∧
¬ Reweighing ∧ ¬ DIR ∧ ¬ DEMV ∧
¬ Optimized Preprocessing ∧ ¬ LFR ∧
¬ Adversarial Debiasing ∧ ¬ Gerry Fair ∧
¬ Meta Fair ∧ ¬ Prejudice Remover

If the regression task is selected, then disable all
the fairness methods not supporting this task

Exponentiated Gradient ∨ Grid Search ⇒ ¬
MLP Classifier ∧¬ MLP Regressor

Exponentiated Gradient and Grid Search
fairness methods do no work with MLP

Classifier and MLP Regressor ML methods

¬ GerryFair ∧¬ MetaFair ⇒ ML Task If not GerryFair and MetaFair fairness methods
are selected, then an ML Task must be selected

Classification ⇐⇒ Classification Metrics ∧¬
Regression Metrics

If the classification ML task is selected, then at
least one classification and no regression
metrics must be selected, and vice versa

Classification Metrics ⇐⇒ ¬ Regression Met-
rics

If a classification metric is selected, then a
regression metric must not be selected and vice

versa

Regression ⇐⇒ Regression Metrics ∧¬ Clas-
sification Metrics

If the regression ML task is selected, then at
least one regression and no classification
metrics must be selected, and vice versa

Box-Cox Method ⇒ Strictly Positive Attributes If the Box-Cox scaler method is selected, then
the dataset must have strictly positive

attributes

5.3.1 Bias Definition

The root of the metamodel in Figure 5.2 is the abstract class Bias representing the
concept of discrimination at a higher level of abstraction. Bias has a domain and
one or more sources (i.e., what generated bias). The possible sources of bias have
been selected from [19] e.g., human discrimination, wrong sampling of data, among
others and have been listed in the dedicated BiasSource enumeration. Then, bias
is composed of a PositiveOutcome and one or more SensitiveVariable instances,
which have one or more SensitiveVarValue each. Finally, both the privileged and
unprivileged groups must be specified in defining bias. The SensitiveGroup meta-
class models these groups. In particular, each SensitiveGroup is identified by one
or more SensitiveVarValue. The Bias metaclass is then specialized by two sub-
metaclasses representing GroupBias and IndividualBias. Both group and individ-
ual biases are composed of one or more Analysis with a particular Scope. In partic-
ular, GroupBias has one or more GroupAnalysis, while IndividualBias has one or

Chapter 5. Modelling Fairness Concepts and Metrics 67

Bias

1 domain: String

1...* source: BiasSource

GroupBias IndividualBias

Analysis

0...1 scope: String

1...*

1...*

PositiveOutcome

1 value: String
1

SensitiveVariable
1...*

SensitiveVarValue

1 value: String
1...*

SensitiveGroup

1...*
privGroup

1...*
unprivGroup

1...*

GroupAnalysis IndividualAnalysis

BiasSource

WRONG_ALG_BEHAVIOUR
HUMAN DISCRIMINATION
WRONG_MEASUREMENT
OMITTED_VARIABLE
WRONG_SAMPLING
WRONG_AGGREGATION
WRONG_LINKING
WRONG_PRESENTATION
RESULT_RANKING
WRONG_SYSTEM_EVAL
WRONG_SYSTEM_TARGET_POP
CHANGE_IN_TARGET_POP

FIGURE 5.2: Bias Definition.

more IndividualAnalysis.
It is worth noticing how, being high-level and not related to a specific dataset or

analysis, this portion of the model can be defined by the domain and legal experts
only, without assistance from data scientists.

5.3.2 Fairness Analysis

Analysis

0...1 scope: String

Metric

1 threshold: EqualityOperator

1 toleranceValue: float

1 function: Function

1...*

Dataset

0...1 groundTruthLabel: String

0...1 predictedLabel: String

1 filePath: String

1...*

DatasetSensitiveVar

1 sensitiveVar:
SensitiveVariable

1...*

DatasetPositive
Outcome

1 positiveOutcome:
PositiveOutcome

1

VariableValue

1 relativeToDataset: bool

1 value: EqualityOperator

OtherVariable
0...*

0...*

DatasetSensitiveVarValue

1 sensitiveVarValue:
SensitiveVarValue

1...*

1...*

DatasetSensitiveGroup

1 mappingGroup: SensitiveGroup

1...*
privGroup

1...*
unprivGroup

FIGURE 5.3: Fairness Analysis.

Figure 5.3 depicts the metamodel portion dedicated to the fairness analysis spec-
ification, represented by the Analysis abstract metaclass. An analysis may have a
scope, i.e., a textual description of the analysis, and is composed by one or more
Datasets. A Dataset has an attribute to specify the name of the column containing

Chapter 5. Modelling Fairness Concepts and Metrics 68

the groundTruthLabel (if any), an attribute to specify the name of the column con-
taining the predictedLabel (if available), and an attribute to specify its filePath.
Then, a mapping of each general concept defined in the bias definition must be iden-
tified in the dataset. In particular, a Dataset is composed of one DatasetPositiveOutcome
metaclass mapping the value of the positive outcome in the dataset, one or more
DatasetSensitiveVar metaclasses (which are in turn composed of one or more
DatasetSensitiveVarValue metaclasses) mapping the sensitive variables, and, if
needed, one or more OtherVariable metaclasses representing other values encoded
in the dataset. Then the sensitive groups must also be mapped in the dataset through
the DatasetSensitiveGroup metaclass. All the metaclasses representing values ex-
tend a VariableValue metaclass. It is worth noting that all the values can be absolute
or relative to the dataset. Finally, an analysis comprises one or more Metric.

5.3.3 Metric Definition

Metric

1 toleranceValue: float

EqualityOperator
1

SingleOperator

1 operator:
SingleParameter
1 value: float

RangeOperator

1 operator:
RangeParameter
1 lowerValue: float
1 greaterValue: float

Function

1

Logaritm Summation

1 start: float

1 end: float

Operation

1 operator:
ArithmeticOperator

OperationComponent
0...1

1
leftSide

1
rightSide

OperationValue

1 value: float

0...1

1

1

ExistingGroupFairnessMetric

1 metric: GroupFairnessMetric

LogicalCondition

0...1 value: VariableValue

0...1 sensGroup:
DatasetSensGroup

SubLogicalCondition

1 operator:
LogicalOperator

0...1

1

0...1

ExpectedValue

0...1 colName: String

GroupSize

0...1 colName: String

1
object

0...1
condition

Probability

ExistingIndividualFairnessMetric

1 metric: IndividualFairnessMetric

LogicalOperator

AND
OR

SingleParameter

EQUAL
GREATER
LOWER
GREATER_EQUAL
LOWER_EQUAL
NOT_EQUAL

RangeParameter

IN_INCLUDED
IN_EXCLUDED
IN_LOWER_INCLUDED
IN_GREATER_INCLUDED

GroupFairnessMetric

STATISTICAL_PARITY
DISPARATE_IMPACT
EQUALIZED_ODDS
EQUAL_OPPORTUNITY
FALSE_POSITIVE_DIFF
TRUE_POSITIVE_DIFF

IndividualFairnessMetric

MANHATTAN_DISTANCE
EUCLIDEAN_DISTANCE
MAHALANOBIS_DISTANCE

FIGURE 5.4: Metric Definition.

Figure 5.4 reports the portion of the metamodel dedicated to the metric defini-
tion. A Metric is composed of an EqualityOperator representing the threshold and
has an attribute representing the toleranceValue (i.e., the level of bias tolerated by
the system). The
EqualityOperator can be a SingleOperator (e.g., "= 0" or "≤ 1") or a RangeOperator
(e.g., "the metric must be < 1 and > 0"). Next, a Metric has a Function representing
the actual metric implementation. Currently, the following functions are available:

Chapter 5. Modelling Fairness Concepts and Metrics 69

Operation (representing a generic arithmetical operation), Logarithm, Summation,
ExpectedValue, GroupSize, and Probability. A metric can also be based on
ExistingGroupFairnessMetric and ExistingIndividualFairnessMetric. Such meta-
classes represent the set of fairness metrics known in the literature and already im-
plemented for group and individual fairness definitions, respectively.3 For each
function, we included a set of attributes needed for their implementation. In the
future, new functions can be added by extending the Function metaclass.

5.4 Conclusion

In this chapter, we presented a formal modeling of the two workflows introduced in
Chapter 2 to perform fairness assessments and identify the best combinations of ML
models and fairness-enhancing methods. These formal models are the foundation
for two low-code approaches discussed in Chapter 6.

Although we have presented them separately, those formalisms could be inte-
grated in the future to further automate the development of fair learning-based sys-
tems. Specifically, the metamodel introduced in Section 5.3 allows for a high-level
definition of bias for a given domain, as well as the creation of custom metrics. In
contrast, the ExtFM outlined in Section 5.2 assists data scientists in selecting features
that contribute to the generation of a comprehensive and correct experiment. By
integrating these two formal models, we could effectively guide data scientists in
designing experiments that help select the best ML models while also accommodat-
ing custom definitions of bias and custom fairness metrics.

3To select the set of metrics, we referred to the ones implemented in the AIF360 library [27].

70

Chapter 6

Low-Code Approaches for
Software Fairness

In this chapter, we introduce two low-code approaches derived from the formal
models discussed in Chapter 5. The first approach is MANILA, a web-based appli-
cation designed to define and execute experiments aimed at identifying the optimal
combination of ML models and fairness-enhancing methods (i.e., fairness benchmark-
ing workflow) [46]. It is grounded on the ExtFM presented in Section 5.2.

The second approach is MODNESS, an MDE-based approach to define and exe-
cute fairness assessment workflows at different levels of abstraction [47]. MODNESS
complements MANILA by allowing domain experts and data scientists to specify
custom bias definitions and metrics. It is based on the bias and fairness metamodel
presented in Section 5.3.

In the future, those two approaches can be combined to guide the data scientist
through the definition and execution of a fairness benchmarking workflow, while
providing high expressiveness in the fairness definition.

The tools presented in this chapter constitute the contribution CN2 proposed to
address the challenge CH2.

This chapter is structured as follows: Section 6.1 is entirely devoted to present
MANILA and the empirical evaluation we conducted. Section 6.2 focuses on MOD-
NESS and its evaluation. Finally, Section 6.3 discusses the proposed approaches and
concludes the chapter.

6.1 MANILA

In this section, we present MANILA, a low-code framework designed to formalize
and execute the workflow outlined in Section 2.2. This framework automates the
evaluation of various ML models and fairness-enhancing methods, helping to select
the one that offers the best trade-off.

Our approach aims to automate and ease the fairness benchmarking workflow,
making it accessible also to data scientists who are less expert in fairness.

As outlined in Section 5.2, each fairness benchmarking workflow comprises a set
of features acting as variation points, which differentiate them from one another. For
this reason, we can think of this family of experiments as a Software Product Line
(SPL) specified by an Extended Feature Model [48].

Figure 6.1 details a high-level picture of MANILA, where each rounded box rep-
resents a step in the fairness benchmarking workflow, while square boxes repre-
sent artifacts. MANILA has been implemented as a low-code web-based applica-
tion through which all the steps of the fairness benchmarking workflow can be per-
formed. Near each artifact, we report the tools involved in its implementation.

Chapter 6. Low-Code Approaches for Software Fairness 71

MANILA

 Experiment
 Script

Experiment
execution

Output

Best ML
Setting

Quality
ReportMANILA

Extended Feature Model

Feature
selection

 MANILA Web Application

Experiment
execution

Experiment
generation

FIGURE 6.1: MANILA high-level overview

The first step in the development process is feature selection, in which the data
scientist selects all the components of the fairness benchmarking workflow through
a dedicated web form. This process may occur during the model requirements pro-
cess of the workflow depicted in Figure 1.1. Next, a Python script implementing the
experiment is automatically generated from the selected features. The generated ex-
periment can be executed directly in the web application, or it can be downloaded
and executed locally or embedded in other pipelines. After its execution, the exper-
iment returns:

1. A quality report reporting for each fairness-enhancing method and ML algo-
rithm the related metrics;

2. The best ML model with the applied fairness-enhancing method identified
with the given trade-off strategy, trained with the full input dataset.

The architecture of MANILA makes it easy to extend. In fact, adding a new
method or metric to MANILA translates to adding a new feature to the web form
and adding the proper code implementing it.

The basis of MANILA is the Extended Feature Model (ExtFM) presented in Sec-
tion 5.2. The ExtFM is the template of all possible experiments a data scientist can
perform and guides them through the fairness benchmarking workflow. We used
the ExtFM as a formalism to reason about the different relationships and constraints
among features before implementing them in the web application.

MANILA is publicly available in the SoBigData research infrastructure (RI) [45]
(after registration)1, and its source code is available on GitHub2.

In the following, we first describe in Section 6.1.1 the web application and how
each workflow step has been implemented. Next, we present the empirical evalua-
tion of MANILA in Section 6.1.2. Finally, we discuss possible threats to the validity
of our proposed approach in Section 6.1.3

6.1.1 Web Application

The features and the constraints defined in the ExtFM presented in Section 5.2 have
been implemented into a low-code web application, which is the core of MANILA.

1https://sobigdata.d4science.org/group/sobigdata.it/manila-univaq
2https://github.com/giordanoDaloisio/manila-web

https://sobigdata.d4science.org/group/sobigdata.it/manila-univaq
https://github.com/giordanoDaloisio/manila-web

Chapter 6. Low-Code Approaches for Software Fairness 72

Through the web application, it is possible to perform all the steps of the fairness
benchmarking workflow described in Section 2.2. The web application has been im-
plemented using the React Javascript library [177] for the front end and the Flask
Python library [178] for the back end. Moreover, we employ the Celery Python li-
brary [179], with the RabbitMQ message broker [180] and the Redis database [181],
to run the experiments asynchronously on the server. This way, we avoid overload-
ing the server in case of multiple experiment runs. In the following, we detail how
each workflow step has been implemented in the application.

Feature Selection

The feature selection step has been implemented in MANILA through a web form
that includes all the features and the constraints defined in the ExtFM.

FIGURE 6.2: MANILA Web Form

Figure 6.2 shows a portion of the web form. The form comprises seven sub-forms
(one for each macro feature defined in the ExtFM, see Section 5.2). Each sub-form
includes all the concrete (i.e., non-abstract) children features of the relative macro
feature in the ExtFM. For instance, Figure 6.2 shows the sub-form relative to the
Dataset macro feature, which includes all children features such as File Extension,
Label, and Sensitive Variables. Children with an alternative relationship in the ExtFM
are implemented in the form either through a radio group (like the File Extension
or Label fields in Figure 6.2) or by a logical condition among fields (for instance, in
Figure 6.2 the Multiple Sensitive Variables field has been disabled because the Single
Sensitive Variable field has been selected). In all other cases, features in the ExtFM
have been implemented as checkbox fields in the form. Additional attributes related
to the features (like the Label Name or Positive Value fields) have been implemented
as text fields, which may be mandatory or not, depending on the case.

The cross-tree constraints defined in the ExtFM have been implemented as logi-
cal constraints among the different form fields. Figure 6.3 shows an example of such
constraints. In the figure, it can be seen how the Regression field has been disabled.
This is due to two reasons: first, the Classification ML task has already been selected,
and second, the Regression task is incompatible with the fairness methods included

Chapter 6. Low-Code Approaches for Software Fairness 73

FIGURE 6.3: Example of web form cross-tree constraints

so far. Hence, since the Fairness quality property has been selected, regression ML
methods can not be selected; otherwise, they would lead to a non-executable exper-
iment. This constraint is also shown to the user through a message saying that "Re-
gression task is incompatible with fairness methods". In addition, note how the Reweigh-
ing fairness method has been disabled as well. This is because the Reweighing method
is not compatible with the MLP Classifier ML method that has already been selected.
This constraint is also reported to the user, saying that Reweighing is "not compatible
with MLP Classifier or MLP Regressor".

Concerning the selection of fairness metrics, we included a set of questions (in-
spired by [112]) to help the data scientist select the proper ones. Figure 6.4 reports
the set of questions. The first question aims at identifying if the fairness definition to
assess is an individual (i.e., similar individuals should be treated similarly) or group
(i.e., individuals of a specific group should not be discriminated) fairness defini-
tion [19]. If the data scientist selects individual, then the three individual fairness
metrics implemented in the aif360 library (i.e., Euclidean Distance[182], Manhattan
Distance[183] and Mahalanobis Distance[184]) are shown. Instead, if the data scientist
chooses the group fairness definition, another question aims to identify the specific
category of group fairness definitions. In particular, the data scientist has to specify
if they are interested in equal fairness (i.e., everyone should have the same probabil-
ity of receiving the positive label predicted [19]), proportional fairness (i.e., everyone
should have the positive label predicted only if the other variables, different from the
sensitive ones, tell that [19]), or other fairness definitions. Based on the selected def-
inition, then a set of metrics is shown. Following previous work [112], for the equal
category, we have included Statistical Parity and Disparate Impact fairness metrics

Chapter 6. Low-Code Approaches for Software Fairness 74

FIGURE 6.4: Fairness metric selection

[81]. For the proportional category, we have included the Equalized Odds Difference
[83] and Average Odds Difference [116]. Finally, for the other category, we included the
True Positive Difference and False Positive Difference [185].

FIGURE 6.5: File upload field and execution buttons

Finally, Figure 6.5 shows the last field in the form that enables users to upload
their dataset for running the generated experiment on the server. Below this field,
two buttons are available: one for downloading the generated code and the other
for executing the experiment on the server. It is important to note that, as shown
in Figure 6.5, the buttons are disabled because not all the constraints outlined in the
form have been met.

Experiment Generation and Execution

After selecting a set of features that meet all the form’s constraints the experiment is
generated and can be executed.

The generation process starts by either clicking on the Generate Code or Run the
experiment buttons shown in Figure 6.5. The first button starts the code generation
process and makes the generated code available for download. The second button
executes the experiment directly on the server.

Chapter 6. Low-Code Approaches for Software Fairness 75

The experiment performs a grid search across all combinations of ML algorithms
and fairness-enhancing methods, calculating the selected metrics for each combi-
nation. It is worth noticing how the space of the search (i.e., the possible combi-
nations of ML models and fairness-enhancing methods) will always be relatively
small, given the constraints imposed by the ExtFM. This allows to perform a com-
plete search in a reasonable amount of time (depending on the size of input data).

Quality evaluation experiment

Best
Setting

ML Model 2

Effectiveness/Fairness
Report

Settings Metric 1 ... Metric J

Setting
1,1 ---

...

Setting
3,n

...Method
1

Fairness

Method
n

ML Model 1

ML Model 3

FIGURE 6.6: Example of benchmarking process

Figure 6.6 reports an example of how the fairness benchmarking process is done
in MANILA. In this example, the data scientist has selected three ML models and
n fairness-enhancing methods. In addition, they selected j metrics to evaluate the
fairness and effectiveness of the ML methods. Thus, the testing process applies the n
fairness methods to each ML algorithm and computes the j fairness metrics. Finally,
the process returns a report synthesizing the results for fairness and effectiveness,
along with the best setting selected using the chosen trade-off strategy.
1 from utils import cross_val
2 from methods import FairnessMethods
3 ...
4

5 ml_methods = {
6 ’logreg ’: LogisticRegression (),
7 ’gradient ’: GradientBoostingClassifier (),
8 }
9 fairness_methods = {

10 ’no_method ’: FairnessMethods.NO_ONE ,
11 ’preprocessing ’: [
12 FairnessMethods.DEMV ,
13],
14 ’inprocessing ’: [
15 FairnessMethods.EG,
16 FairnessMethods.GRID ,
17],
18 ’postprocessing ’: []
19 }
20 base_metrics = {
21 ’stat_par ’: [],
22 ’eq_odds ’: [],
23 ’zero_one_loss ’: [],
24 ’disp_imp ’: [],
25 ’acc’: [],
26 ’hmean ’: [],
27 }
28 for m in ml_methods.keys():
29 model = Pipeline ([
30 (’scaler ’, StandardScaler ()),
31 (’classifier ’, ml_methods[m])
32])

Chapter 6. Low-Code Approaches for Software Fairness 76

33 for f in fairness_methods.keys():
34 model = deepcopy(model)
35 data = data.copy()
36 if f == ’preprocessing ’:
37 for method in fairness_methods[f]:
38 model_fair , ris_metrics = cross_val (..., model=

model , metrics=base_metrics , preprocessor=method
)

39 ...
40 elif f == ’inprocessing ’:
41 for method in fairness_methods[f]:
42 model_fair , ris_metrics = cross_val (..., model=

model , metrics=base_metrics , inprocessor=method)
43 ...
44 elif f == ’postprocessing ’:
45 for method in fairness_methods[f]:
46 model_fair , ris_metrics = cross_val (..., model=

model , metrics=base_metrics , postprocessor=
method)

47 ...

LISTING 6.1: Portion of the generated experiment code

To have a more concrete visualization of how the experimental evaluation is con-
ducted, Listing 6.1 reports a small portion of the generated Python code. In the code,
there are three dictionaries containing the list of ML methods, fairness methods, and
metrics to use - namely ml_methods, fairness_methods, and base_metrics, respec-
tively (lines from 5 to 27 in Listing 6.1). Next, lines from 28 to 32 show a for loop ex-
ploring the list of ML methods, and, for each method, the function creates a pipeline
including a preprocessing method (in this example, the StandardScaler preprocess-
ing approach). Finally, a nested for loop explores the list of fairness methods, and,
for each of them, a function performing the evaluation is called according to the fact
that the fairness method is a preprocessing, inprocessing, or postprocessing one (lines
from 33 to 47 in Listing 6.1). It is worth noting how the depicted generated exper-
iment may vary based on the features selected. However, the overall structure is
general and unrelated to the selected features.

If the user chooses to download the experiment, MANILA generates the corre-
sponding Python implementation relying on the Jinja template engine [186]. Addi-
tionally, it generates the environment.yml file needed to create the conda environ-
ment with all the required libraries [187]. The experiment can be executed locally by
running the following command:
$ python main.py -d <DATASET PATH >

Otherwise, it can be called through a REST API or any other interface such as a
desktop application or a Scientific Workflow Management System like KNIME [188],
[189]. This generality of our experimental workflow makes it very flexible and suit-
able for many use cases. After the execution, the code returns the quality report in
CSV format. In addition, the best ML model is trained with the full input dataset
and by applying the best fairness-enhancing method if selected. The ML model re-
turned by the experiment is saved as a pickle file [190]. We have chosen this format
since it is a standard format to store serialized objects in Python and can be easily
imported into other scripts.

On the contrary, if the user chooses to run the experiment online, it is executed
asynchronously using the Celery task queue system [179]. Figure 6.7 shows the on-
line execution process. First, the frontend makes a call to the app controller through
its REST API (step 1 in Figure 6.7). The controller sends the task to a RabbitMQ

Chapter 6. Low-Code Approaches for Software Fairness 77

completion percentage

get task status

Frontend Controller

experiment run

task id

Queue

send task

task id

Worker

execute task

Database

store results

while not
complete check task

store status

experiment result

start 1 2
3

4

7

5 6

experiment result

completion percentage

FIGURE 6.7: Experiment execution on the server

queue and returns the task ID to the frontend (step 2 in Figure 6.7). Next, the task
is executed by a Celery worker, and its status is stored in a Redis database (steps 3
and 4 in Figure 6.7). At the same time, until the experiment execution is not com-
pleted, the frontend periodically asks the controller about the task status (steps 5
and 6 in Figure 6.7). If the experiment is still in progress, a completion percentage
is returned. Otherwise, when the execution is completed, the Celery worker saves
the results on Redis (step 7 in Figure 6.7), and the results are returned to the fron-
tend. Figure 6.8 shows the different elements of the results page. In this particular
example, we used MANILA to evaluate the fairness and effectiveness of a Logistic
Regression model alone and a Logistic Regression model with the application of the
Reweighing preprocessing method [86]. We used the Accuracy metric to evaluate the
effectiveness and the Average (Equality) Odds [83] and Disparate Impact [82] metrics to
evaluate the fairness of the two settings. Finally, we adopted the Statistical Mean as
the aggregation function to evaluate the fairness-effectiveness trade-off. The result
page shows the metrics in a bar chart and in a tabular way (i.e., raw results). Fig-
ure 6.8a shows the bar chart along with two buttons to download the fully trained
best ML model in pickle format and the computed metrics as a CSV file, respectively.
From the bar chart, it can be seen how the Logistic Regression plus Reweighing com-
bination (the blue bar in Figure 6.8a) performs better because it achieves a higher
value of Disparate Impact (the closer this metric is to one, the more fair is the model)
and a higher value of Statistical Mean. The same results are shown in a tabular for-
mat as displayed in figure 6.8b. In this case, the best combination is highlighted in
green in the table. Finally, figure 6.8c shows a short description of how to read and
interpret the different metrics.

6.1.2 Evaluation

In this section, we describe the evaluation we performed on MANILA. To this aim,
we formulate the following research questions (RQ):

RQ1 Can MANILA effectively assist in conducting real-world fairness evalua-
tions?

RQ2 To what extent the results returned by MANILA are in line with base-lines?

Chapter 6. Low-Code Approaches for Software Fairness 78

(A) Metrics bar chart

(B) Raw results

(C) Metrics description

FIGURE 6.8: MANILA result page

Following a previous work [112], we evaluate MANILA both in terms of expres-
siveness (RQ1) and correctness (RQ2) by reproducing the experimental evaluation de-
scribed in Chapter 4 for the DEMV algorithm. More in detail, the expressiveness is
assessed by proving that MANILA can replicate the selected fairness evaluation. In
contrast, correctness is assessed by showing that the results obtained with the exper-
iments generated by MANILA are comparable to the original ones.

Chapter 6. Low-Code Approaches for Software Fairness 79

TABLE 6.1: Replicated experiments

Experiment ML Settings Datasets Metrics

1

LogReg
LogReg + EG
LogReg + Grid
LogReg + DEMV

CMC
Crime
Drug
Law
Park
Wine

SP
AO
DI
ZO Loss
Acc
H-Mean

2

Gradient
Gradient + EG
Gradient + Grid
Gradient + DEMV

CMC
Law

SP
AO
DI
ZO Loss
Acc
H-Mean

3

SVM
SVM + EG
SVM + Grid
SVM + DEMV

CMC
Law

SP
AO
DI
ZO Loss
Acc
H-Mean

We replicate three specific experiments performed on DEMV (i.e., the ones shown
in Tables A.10, A.12, and A.13), which are synthesized in Table 6.1. We have chosen
to replicate these experiments among all the ones conducted because they provide
the highest combination of ML methods, fairness methods, and metrics.

The first replicated experiment is the evaluation of four different ML settings
(i.e., Logistic Regression (LogReg) alone, Logistic Regression plus Exponentiated Gradient
(EG), Logistic Regression plus Grid Search (GRID), and Logistic Regression plus DEMV)
on six different datasets (i.e., Contraceptive Method Choice (CMC) [155], Communities
and Crime (Crime) [156], Drug Usage (Drug) [158], Law School Admission (Law) [74],
Parkinson Telemonitoring (Park) [159], and Wine Quality (Wine) [160]). The other two
replicated experiments involve the same fairness methods as the first one but em-
ploy two different ML classifiers (i.e.,, Gradient Boosting (Gradient) and Support Vector
Machines (SVM), respectively). In this case, the evaluations are applied only to the
CMC and Law datasets. In all experiments, we consider two sensitive variables for
each dataset. The metrics involved are: Statistical Parity (SP)[81], Equalized Odds
(EO)[83], Zero One Loss (ZO Loss)[147], Disparate Impact (DI)[82], Accuracy (Acc)[155],
and Harmonic Mean (H-Mean)[149] as aggregation function.

The expressiveness is evaluated by assessing if MANILA can reproduce the de-
scribed experiments correctly. The correctness is evaluated by assessing if the results
of the experiments generated by MANILA are close to the ones reported in the orig-
inal experiments. More in detail, following previous work [112], the results of the
generated experiments should be within the standard deviation range of the results
reported in Tables A.10, A.12, and A.13, and there should not be a statistically sig-
nificant difference between the results.

Chapter 6. Low-Code Approaches for Software Fairness 80

RQ1: Expressiveness Evaluation

Concerning the expressiveness of MANILA, we were able to correctly reproduce all
the experiments reported in Table 4.1.3 In particular, following the steps described
in Section 6.1.1, we first specified the features of the experiments listed in Table 4.1
from the graphical interface of MANILA. Next, we downloaded the generated codes
to execute them locally. Finally, we ran the experiments to obtain the results. In total,
we generated and executed ten different experiments, one for each dataset reported
in Table 4.1.

Being a low-code platform, MANILA does not require to write any line of code
to implement the given experiments. In contrast, the original experiments required
almost 200 lines of code, as seen in the repository linked in the original paper.4.

Answer to RQ1: MANILA presents a high level of expressiveness that allows it to
implement real-world fairness evaluations involving real-world datasets and to
replicate previous experiments.

RQ2: Correctness Evaluation

Concerning the correctness of the generated experiments, Table 6.2 reports, for each
metric of each experiment, the p-values of the non-parametric Kruskal-Wallis H test
performed between the results of the original experiments and the ones obtained by
executing the code generated by MANILA.

TABLE 6.2: p-values of the Kruskal-Wallis H test for each experiment

SP AO ZO Loss DI Acc H-Mean

Exp. 1 0.84 0.08 0.84 0.45 0.38 0.53

Exp. 2 0.10 0.71 0.31 0.43 0.27 0.71

Exp. 3 1.00 0.57 0.16 0.96 0.72 0.75

From the table, it can be seen that all the p-values are > 0.05, meaning that all the
metrics obtained by running the code generated by MANILA are not statistically
different from the original ones. In addition, Figure 6.9 reports a comparison of the
aggregated h-means of the three experiments.5 As shown, on average, the results of
the three experiments generated by MANILA are very close to the original ones and
are within the standard deviation range.

Answer to RQ2: The correctness of the code generated by MANILA allows to cor-
rectly replicate baseline fairness evaluations by obtaining results that are statisti-
cally equal to the original ones.

3The full replication package of the experiment is available at the following link https://github.
com/giordanoDaloisio/manila/tree/main/replication_package

4The original code of the reproduced experiment is available here https://github.com/
giordanoDaloisio/demv/blob/main/replication_package/src/generatemetrics.py

5We visualize only the h-mean because, being an aggregated value, it can be considered as a syn-
thesis of the other selected metrics

https://github.com/giordanoDaloisio/manila/tree/main/replication_package
https://github.com/giordanoDaloisio/manila/tree/main/replication_package
https://github.com/giordanoDaloisio/demv/blob/main/replication_package/src/generatemetrics.py
https://github.com/giordanoDaloisio/demv/blob/main/replication_package/src/generatemetrics.py

Chapter 6. Low-Code Approaches for Software Fairness 81

Exp 1 Exp 2 Exp 3
0.0

0.2

0.4

0.6

0.8

H
-M

ea
n

Approach
MANILA
original

FIGURE 6.9: Aggregated H-Means of the original experiments and
MANILA’s ones

6.1.3 Threats to Validity

This section discusses possible threats that can hamper the results of the performed
evaluation.

Internal validity concerns internal factors that can influence the results of our eval-
uation. The code generated by MANILA could contain implementation errors. To
mitigate this threat, we referred to the most adopted fairness library (i.e., AIF360)
for selecting the fairness methods and metrics to include in the tool. In addition, we
have shown how the results returned by MANILA are statistically comparable with
the original ones. Another threat concerns the fact that there could be other meth-
ods or metrics currently not included in MANILA. To address this threat, we have
shown how MANILA has a level of expressiveness able to model different real-world
use cases. In addition, MANILA can be easily extended to include other methods or
metrics by adding a new entry in the feature model and its actual implementation in
the code generation template.

External validity threats concern the generalizability of our approach. In this re-
spect, there could be some real-world use cases that can not be implemented in
MANILA. In particular, at this stage of work, we are not considering individual
fairness definitions, but only group fairness definitions [19]. However, we have
re-implemented an extensive evaluation involving different ML methods, fairness
methods, metrics, and datasets to show how MANILA can manage different group
fairness evaluations, and, in our future works, we will extend MANILA to include
also individual fairness definitions.

6.1.4 Limitations

While we have demonstrated that MANILA offers a high level of expressiveness
in replicating fairness development workflows, it also has some limitations. Specifi-
cally, modeling the workflow as an SPL provides valuable guidance to data scientists
and promotes the reuse of existing features. However, it may also restrict the abil-
ity to model fairness development workflows in contexts that differ from traditional
ones. This is, for instance, the case for the TPL use case presented in Chapter 2,
where the authors of the related paper adapted the coverage metric from the recom-
mender systems domain to measure popularity bias. This metric is not a traditional
metric from the fairness domain. Thus, it has not been included in the ExtFM and in
the subsequent web implementation of MANILA.

Chapter 6. Low-Code Approaches for Software Fairness 82

We aimed to address this limitation with MODNESS, a model-driven framework
designed to perform more extensive and comprehensive bias assessment workflows.

6.2 MODNESS

In this section, we introduce MODNESS, a model-driven framework designed to
conceptualize, design, implement, and execute the fairness assessment workflow
presented in Chapter 2 and illustrated in Figure 2.1. MODNESS complements MANILA
by allowing a more extensive and comprehensive definition of bias. In particular, it
allows the specification of high-level definitions of bias for a given domain and the
modeling of custom metrics for fairness assessment.

MODNESS can be characterized as a two-layered framework. At its core lies an
abstract bias definition upon which multiple fairness analyses can be defined and
built.

Fairness
Analyses

Specification

Bias
Definition

Fairness
AssessmentAnalyses Implementation

Code
Generator

Bias and Fairness
Model

Bias and Fairness
Metamodel

conform to

used to specify

Bias and Fairness
Modness DSL

Human Driven Automated

Generated
Code

Results

Acceleo
Python

FIGURE 6.10: MODNESS high-level view.

Figure 6.10 provides a high-level overview of MODNESS: round boxes represent
the four primary steps of the fairness assessment workflow outlined in Section 2.1,
while square boxes depict the artifacts that are either developed or automatically
generated. Adjacent to each artifact, we also indicate the technologies employed for
its implementation. The fairness assessment workflow within MODNESS can be di-
vided into two main phases: a Human Driven phase, which involves user interaction
(as described in Section 2.1), and an Automated phase, which operates without direct
user involvement.

To initiate the fairness assessment process with MODNESS, the initial step in-
volves defining bias by specifying the sensitive variables, privileged and unprivileged
groups, and positive outcome. Recalling the University and TPL use cases defined in
Chapter 2, the bias definition for University could include gender as the sensitive
variable, men and women as the privileged and unprivileged groups respectively, and
positive admission as the positive outcome. For the TPL use case, a bias definition can
comprise popularity as the sensitive variable, popular and unpopular libraries as the
privileged and unprivileged groups, and recommendation as the positive outcome.

Chapter 6. Low-Code Approaches for Software Fairness 83

Note how these bias definitions are generic in this phase and unrelated to any spe-
cific dataset.

Subsequently, multiple analyses can be constructed based on a definition of bias.
A fairness analysis tailors a specific bias definition to a particular dataset with a de-
fined scope and associated fairness metrics. These fairness metrics can be established
in existing literature or custom-defined by the user. Note how the dataset may also
include the predictions of an ML model in one of its columns also allowing the fair-
ness assessment of the model’s predictions (similarly to other fairness toolkits like
Aequitas or Themis [95], [191]). Recalling our use cases, a fairness analysis for Uni-
versity can be made of a dataset containing information about the gender of each stu-
dent (mapped, for instance, in a column named sex)6 and the admission outcome (for
instance, in a column named admission), the scope will be equal probability for men and
women to be admitted, and the metric is Statistical Parity. Concerning the TPL use case,
a fairness analysis can comprise a dataset with the popularity of each library (for in-
stance, in a column named frequency) and a recommendation score (for instance, in
a column named recommendation). The recommendation score is eventually used by
the recommender system to identify the items more suited for a recommendation.
For instance, the system may recommend only the items with a score higher than
80% of all other libraries. The scope of the analysis will be that each library must
be recommended despite its popularity, and the metric adopted is the custom coverage
metric from the recommender systems domain [192]. The traditional coverage metric
measures the number of items being recommended over the total amount of items
[84]. This variation measures the amount of unpopular libraries recommended over
the whole recommendations. It is defined as: |Lunpop|/|L| where |Lunpop| is the num-
ber of unpopular (i.e., non-frequent) libraries recommended and |L| is the whole set
of recommendations [75]. The closer this metric is to 1, the more the system is free
from popularity bias.

These specification steps are implemented in MODNESS as a model-driven ap-
proach, utilizing the EMF ecosystem [165]. In this phase, the output is a model
(referred to as the Bias and Fairness Model in Figure 6.10) that includes both the bias
and the corresponding fairness analysis definitions. This model adheres to the Bias
and Fairness Metamodel presented in Section 5.3, which serves as the foundational
structure of MODNESS.

Starting from a model describing the bias and the related fairness analyses def-
initions, MODNESS automatically generates an implementation of them through a
code generator based on Acceleo [167]. In particular, MODNESS generates a Python
code that automatically checks the fairness of a given dataset using the information
provided in the fairness analysis specification. The analyses implementation and the
fairness assessment steps comprise the automated phase of MODNESS and do not
require direct human intervention.

To support the specification of bias and fairness models, we developed a domain-
specific language and its corresponding environment utilizing Xtext technology [166].
This way, users can rely on a textual concrete syntax to specify all the concepts
needed in the traditional fairness workflow. In the forthcoming section, we present
the textual MODNESS specification for two explanatory use cases, i.e., University
and TPL. The Xtext grammar of the MODNESS DSL is available online at [49].

6Note how we refer to the original column names of the dataset related to this use case

Chapter 6. Low-Code Approaches for Software Fairness 84

In the following, we detail MODNESS by first describing the implemented Do-
main Specific Language (DSL) in Section 6.2.1 and, next, describing the code gener-
ation and fairness assessment processes in Section 6.2.2.7

6.2.1 Domain Specific Language

MODNESS DSL has been generated starting from the metamodel presented in Sec-
tion 5.3. Thus, following the metamodel structure, it can be divided into three macro
components. In the following, we present them by showing two implementations
for the University and TPL use cases.

Bias Definition

1 GroupBias "university"{
2 Definition: {
3 domain: "education";
4 source: WRONG_SAMPLING;
5 sensitiveVariables: {
6 SensitiveVariable{
7 name: "gender";
8 values: "male","female";
9 }

10 };
11 positiveOutcome: "positive admission";
12 unprivilegedGroup: {
13 SensitiveGroup{
14 name: "women";
15 sensitiveValue: "gender.female";
16 };
17 };
18 privilegedGroup: {
19 SensitiveGroup{
20 name: "men";
21 sensitiveValue: "gender.male";
22 };
23 };
24 };
25

LISTING 6.2: Bias definition example for the University use case.

Listing 6.2 shows an example of MODNESS bias definition related to the Univer-
sity use case. Since this use case is about group bias, the model’s root is an instance of
the GroupBias metaclass. Next, the first portion of the model consists of a definition,
which specifies all the high-level components of a bias definition. For this use-case,
the domain can be education, and the source can be wrong sampling (e.g., wrong data
have been used to train the ML model). Recalling the general workflow described
in Section 2.1, to give a high-level definition of group bias, we must provide the sen-
sitive variables, the positive outcome, and the privileged and unprivileged groups.
For this scenario, we have only one sensitive variable representing the gender, which
has two values, i.e., male and female.8 Next, the positive outcome is represented by a
positive admission. Finally, the unprivileged group is women and has a reference to the
female sensitive value (indicating that this group is identified by that specific value
of the sensitive variable gender). On the contrary, the privileged group is men and has
a reference to the male sensitive value.

7The source code of MODNESS is available in our replication package [49]
8Note how the values male and female are instances of the SensitiveVarValue metaclass. However,

in the DSL, they are represented as values attributes of the SensitiveVariable metaclass so as not to
burden the overall syntax.

Chapter 6. Low-Code Approaches for Software Fairness 85

1 GroupBias "TPL"{
2 definition: {
3 domain: "recommender systems";
4 source: WRONG_ALGORITHM_BEHAVIOUR;
5 sensitiveVariables: {
6 SensitiveVariable{
7 name: "popularity";
8 values: "popular","unpopular";
9 }

10 };
11 positiveOutcome: "recommendation";
12 unprivilegedGroup: {
13 SensitiveGroup{
14 name: "unpopular libraries";
15 sensitiveValue: "popularity.unpopular";
16 };
17 };
18 privilegedGroup: {
19 SensitiveGroup{
20 name: "popular libraries";
21 sensitiveValue: "popularity.popular";
22 };
23 };
24 };
25

LISTING 6.3: Bias definition example for the TPL use case.

Listing 6.3 reports instead an example of bias definition for the TPL use case.
Note how the main components of a bias definition are always the same regardless
of the domain (i.e., group or individual bias, sensitive variables, positive outcome, and
sensitive groups if the definition is a group bias). The root of the model is a GroupBias
class where the domain is recommender systems, and the source of bias could be wrong
algorithm behaviour. The sensitive variable, in this case, is represented by popularity its
possible values are popular and unpopular. The positive outcome is a recommenda-
tion from the system. Finally, the unprivileged group is represented by unpopular
libraries, whereas the privileged group is represented by popular libraries.

Fairness Analysis

1 analysis: {
2 GroupAnalysis{
3 scope: "all people must have
4 same admission
5 probability despite gender";
6 dataset: {
7 Dataset {
8 id: ’admissions ’;
9 predictedLabelName: ’admitted ’;

10 filePath: ’admissions.csv’;
11 positiveOutcome: {
12 id: "admission";
13 mappingOutcome: "positive admission";
14 value: {
15 operator: EQUAL;
16 value: 1.0;
17 };
18 };
19 datasetSensitiveVariable: {
20 DatasetSensitiveVariable{
21 name: "sex";
22 mappingSensitiveVariable: gender;
23 values: {
24 SensitiveVariableValue{
25 id: "female";
26 mappingValue: "gender.female";

Chapter 6. Low-Code Approaches for Software Fairness 86

27 value: {
28 operator: EQUAL;
29 value: 0.0;
30 };
31 },
32 SensitiveVariableValue{
33 id: "male";
34 mappingValue: "gender.male";
35 value: {
36 operator: EQUAL;
37 value: 1.0;
38 };
39 }
40 }
41 }
42 };
43 }
44 };
45 datasetUnprivilegedGroup: {
46 id: ’women ’;
47 mappingGroup: women;
48 sensitiveVariables:
49 ("admissions.sex.female");
50 };
51 datasetPrivilegedGroup: {
52 id: ’men’;
53 mappingGroup: men;
54 sensitiveVariables:
55 ("admissions.sex.male");
56 };
57

LISTING 6.4: Fairness analysis example for the University use case.

Listing 6.4 shows the fragment of the model related to the analysis definition
for the University scenario. We recall that an analysis implements a high-level bias
definition and maps each abstract component into a real feature of a dataset. In
this example, since we start from a GroupBias definition, the analysis is modelled
as an instance of the GroupAnalysis metaclass. The scope of the analysis is that
“all people must have the same admission probability despite their gender". The analysis
comprises a Dataset class, which models the dataset that will be used in the analysis.
In particular, the model’s predictions (i.e., admission of students) are stored in a
column named admitted (see line 9 of Listing 6.4). As specified in the bias definition,
a positive outcome for this use case is represented by a positive admission, which is
encoded with a value of 1.0 in the admitted column of the dataset. This information
is represented in the model by the positiveOutcome attribute of the Dataset class,
which says that the positive admission positive outcome is represented with a value
equal to 1.0 (lines from 11 to 18).

Next, we need to associate each sensitive variable with specific columns and values
in the dataset. More specifically, the model defines the "sex" column as representing
the gender sensitive variable, where female is coded as a value of 0.0, and male is coded
as a value of 1.0 (referenced in lines 19 to 44).

Furthermore, the model identifies the unprivileged group as women within the
dataset, which corresponds to instances with a value of 0.0 in the "sex" column (this
concept is captured within the model through a linkage to the SensitiveVariableValue
class, marked by the ID "admissions.sex.female"). Similarly, the privileged group
is represented by instances that have a value of 1.0 in the dataset (covered in lines 45
to 56).
1 analysis: {
2 GroupAnalysis{
3 scope: "relevant libraries must
4 be recommended despite

Chapter 6. Low-Code Approaches for Software Fairness 87

5 their popularity";
6 dataset: {
7 Dataset {
8 id: ’recommendations ’;
9 predictedLabelName: ’ranking ’;

10 filePath: ’recommendations.csv’;
11 positiveOutcome: {
12 id: "high -ranking";
13 mappingOutcome: recommendation;
14 value: {
15 operator: GREATER_EQUAL;
16 value: 0.8;
17 };
18 relativeToDatasetSize;
19 };
20 datasetSensitiveVariable: {
21 DatasetSensitiveVariable{
22 name: "frequency";
23 mappingSensitiveVariable:
24 popularity;
25 values: {
26 SensitiveVariableValue{
27 id: "non -frequent";
28 mappingValue:
29 "popularity.unpopular";
30 value: {
31 operator: MINOR_EQUAL;
32 value: 0.8;
33 };
34 relativeToDatasetSize;
35 },
36 SensitiveVariableValue{
37 id: "frequent";
38 mappingValue:
39 "popularity.popular";
40 value: {
41 operator: GREATER;
42 value: 0.8;
43 };
44 relativeToDatasetSize;
45 }
46 }
47 }
48 };
49 }
50 };
51 datasetUnprivilegedGroup: {
52 id: ’non -frequent libraries ’;
53 mappingGroup: "unpopular libraries";
54 sensitiveVariables: ("recommendations.frequency.non -frequent");
55 };
56 datasetPrivilegedGroup: {
57 id: ’frequent libraries ’;
58 mappingGroup: "popular libraries";
59 sensitiveVariables: ("recommendations.frequency.frequent");
60 };
61

LISTING 6.5: Fairness analysis example for the TPL use case.

Listing 6.5 shows the analysis definition for the TPL use case. Similar to the
University scenario, this analysis maps each component of the bias definition into
concrete features of the dataset under analysis. We start with an instance of the
GroupAnalysis metaclass. An instance of the Dataset metaclass models the dataset
used for the analysis, with the predicted rank stored in the ranking column. This in-
formation is thus reported as an attribute of the Dataset class (line 9). Additionally,
based on inputs from the domain expert, we know that the system recommends a
library if its ranking exceeds 80% of the predicted ranks (i.e., if the libraries are or-
dered in descending rank order, only the top 20% are recommended) [75]. This can

Chapter 6. Low-Code Approaches for Software Fairness 88

be modelled in MODNESS by specifying in the positiveOutcome attribute that a
recommendation positive outcome is encoded with a value greater than or equal to
0.8 for the ranking class. The relativeToDatasetSize keyword indicates that we are
using relative values (i.e., percentage) rather than absolute ones (lines 11-19).

Similarly, assume that the domain expert specifies that a library is popular if it
appears in many projects [75]. In particular, the dataset has a column named fre-
quency containing the number of projects in which it appears, and a library is popular
if its frequency is higher than 80% of all libraries. Hence, first, an instance of the
DatasetSensitiveVariable metaclass maps the popularity sensitive variable to the
frequency column in the dataset (lines 21-24). Next, as done for the ranking, the model
maps popular libraries to values greater than 0.8 using the relativeToDatasetSize
keyword and unpopular libraries to values lower or equal to 0.8 of the entire dataset
(lines 25-45). Finally, the model reports how the unprivileged group is identified in
the dataset with the non-frequent sensitive variable value, while the privileged group
is identified in the dataset with the frequent sensitive variable value (lines 51-60).

Metric Definition

1 metric: {
2 Metric{
3 name: "StatisticalParity";
4 toleranceValue: 0.2;
5 function: ExistingGroupFairnessMetric {
6 metric: STATISTICAL_PARITY;
7 };
8 optimalValue: {
9 operator: EQUAL;

10 value: 0.0;
11 };
12 };
13 };
14

LISTING 6.6: Metric definition example for the University use case.

Listing 6.6 shows the fragment of the model devoted to the metric definition for
the University use case. In this scenario, based on the scope of the analysis, the data
scientist suggests using the Statistical Parity (SP) metric to assess fairness. SP is a
widely adopted metric in the fairness literature that measures the probability of an
item receiving a positive prediction, whether it is in the privileged group or not [81].
A value of 0 means fairness. This metric is included among the possible values for
the ExistingGroupFairnessMetric metaclass. Hence, to model this information in
MODNESS, a user first has to define an instance of the Metric metaclass and set
a tolerance value, e.g., 0.2 [82]. Next, they have just to define an instance of the
ExistingGroupFairnessMetric metaclass and set its value to STATISTICAL_PARITY.
Finally, this metric’s optimal value is reported as equal to 0.0.

1 Metric{
2 name: "coverage";
3 toleranceValue: 0.2;
4 function: Operation{
5 arithmeticOperator: RATIO;
6 leftSide: {
7 function: GroupSize{
8 groupCondition: {
9 sensitiveGroup: "non -frequent libraries"

10 AND value:"recommendations.high -ranking"
11 };
12 };
13 };

Chapter 6. Low-Code Approaches for Software Fairness 89

14 rightSide: {
15 function: GroupSize{
16 groupCondition: {
17 value: "recommendations.high -ranking"
18 };
19 };
20 };
21 }
22 optimalValue: {
23 operator: EQUAL;
24 value: 1.0;
25 };
26 };
27

LISTING 6.7: Metric definition example for the TPL use case.

Listing 6.7 reports instead an implementation of a metric for the TPL use case.
In this case, the data scientist suggests using a custom metric to assess the amount
of bias in the system. In particular, they suggest using an adaptation of the cover-
age metric from the recommender systems domain to measure popularity bias [192].
Recall, from the definition given at the beginning of this section, that this metric is
defined as the ratio of unpopular items recommended over the whole recommenda-
tions, i.e., |Lunpop|/|L|. Since this metric is not a traditional metric from the fairness
literature, it is not included among the possible values for the GroupFairnessMetric
enumeration. However, it can be modeled in MODNESS as follows: first, create an
instance of the Metric metaclass, which will contain the custom metric and set its
tolerance value, for instance, 0.2 (lines 2-3 in Listing 6.7). Next, recalling the defi-
nition given above, this metric is a ratio between two values. Hence, we create an
instance of the Operation metaclass with the arithmeticOperator attribute set to
RATIO (line 5). Next, we have to model the left and right sides of the ratio (i.e., its nu-
merator and its denominator). The numerator is the number of non-frequent libraries
being recommended. This information can be modeled in MODNESS by first cre-
ating an instance of the GroupSize metaclass, which represents a function to count
the number of items in a group (line 7). Next, we have to define the set of items
that have to be counted by the GroupSize function (i.e., the non-frequent items being
recommended). So, we define a set of boolean conditions that can be used to select a
set of items from the dataset. In this case, we have two logical conditions connected
with an AND. The first logical condition selects items from the non-frequent sensitive
group, while the second logical condition selects items having the high-ranking pos-
itive outcome (lines 9-10). The denominator is instead the number of items having
a high-ranking. This information can be modeled similarly to the numerator by cre-
ating an instance of GroupSize metaclass, this time filtering only items with a high-
ranking (lines 15-19). Finally, it is reported that the threshold for this metric is equal
to 1.0 (lines 22-25).

6.2.2 Code generation and fairness assessment

After defining fairness and its corresponding metrics, MODNESS generates the fair-
ness assessment implementation using a source code generator developed with Ac-
celeo. This generator exploits specific templates to create static and dynamic parts
of the target code by incorporating queries on the source models. Acceleo templates
leverage a defined syntax to specify conditions or iterations over elements in the
input models. Listing 6.8 depicts an excerpt of the developed Acceleo template.9

9The developed Acceleo-based code generator is available on the MODNESS replication package
[49]

Chapter 6. Low-Code Approaches for Software Fairness 90

1 f i l e _ p a t h = ’ [biasModel . d a t a s e t . f i l e P a t h /] ’
2 predicted_label_name = ’ [biasModel . d a t a s e t . predictedLabelName /] ’
3 ground_truth_label_name = ’ [biasModel . d a t a s e t . groundTruthLabelName /] ’
4 . . .
5 [i f biasModel . metr ic −> s i z e () >0]
6 [f o r (metr ic : Metric | biasModel . metr ic)]
7 [i f (metr ic . operator . oclIsTypeOf (SingleOperator))]
8 threshold = [metr ic . operator . oclAsType (SingleOperator) . value /]
9 [/ i f]

10 [/ f o r]
11 [/ i f]

LISTING 6.8: Fragment of an explanatory MODNESS Acceleo
template.

To support the generation phase, we rely on Pandas [193] and AI360 Python
[27] libraries to preprocess and support fairness analysis, respectively. In particu-
lar, MODNESS exploits three different Acceleo templates developed to support each
phase of the process, i.e., bias definition, fairness analysis specification, and met-
ric definition. To cover the first phase, the generated code supports the high-level
specification of the analyzed fairness scenario, including the sensitive variables, the
expected positive outcome, and the parameters needed to feed the selected metric.
In such a way, the configuration is compliant with the user-defined specification. Af-
terward, the fairness analysis phase could be conducted by means of a set of prede-
fined implementations of the state-of-the-art fairness metrics (taken from the AIF360
library [27]). Alternatively, MODNESS can generate operator specifications that de-
fine and compose different metrics.

1 from fairnessMetric import FairnessMetric
2 import pandas as pd
3

4 # INPUT DATA
5 file_path = "data/admissions.csv"
6 predicted_label_name = "admission"
7 data = pd.read_csv(file_path)
8 indexes = ["sex"]
9 dataset_unprivileged_group = {"sex": 0}

10 dataset_privileged_group = {"sex": 1}
11

12 # PARAMETERS
13 dataset_positive_outcome = 1
14 threshold = 0.0
15 tolerance_value = 0.2
16

17 # FAIRNESS ASSESSMENT
18 metrics = FairnessMetric(data ,dataset_unprivileged_group ,

dataset_privileged_group ,ground_truth_label_name ,
predicted_label_name ,dataset_positive_outcome)

19 print(metrics.statistical_parity_difference ())
20 if abs(metrics.statistical_parity_difference ()) > (threshold +

tolerance_value):
21 print("Biased")
22 else:
23 print("Fair")

LISTING 6.9: Generated code for the University use case.

Listing 6.9 reports the code generated by MODNESS for the University use case.
All the metrics and operations defined in the metamodel (i.e., all the metaclasses
extending the Function metaclass in Fig. 5.4) have been implemented as functions
in the FairnessMetric Python class, which is imported at the beginning of the script.

Chapter 6. Low-Code Approaches for Software Fairness 91

In addition, the pandas Python library is imported to read and process the dataset.
Next, lines from 4 to 15 define a set of variables implementing attributes specified
in the model during the fairness analysis definition phase (i.e., file path, predicted
label name, privileged and unprivileged groups, positive outcome, threshold, and
tolerance value). Finally, the FairnessMetric class is instantiated on line 18. As
said above, this class provides both implementations of existing fairness metrics and
operations to create new ones. Since, in this use case, we are using a metric already
defined among the possible values of the GroupFairnessMetric enumeration (i.e.,
statistical parity), the generated code calls a method from the FairnessMetric class
implementing it (line 20). Finally, lines from 21 to 24 check if the value returned
by the metric is within the defined threshold. If so, a "Fair" message is printed,
"Biased" otherwise.

1 from FairnessMetric import FairnessMetric , binarize
2 import pandas as pd
3 from operators import SingleOperator
4

5 # INPUT DATA
6 file_path = "data/popbias.csv"
7 predicted_label_name = "ranking"
8 data = pd.read_csv(file_path)
9

10 # PREPROCESSING
11 operator_value = 0.8
12 operator = SingleOperator.GREATER_EQUAL
13 binarize(data , "frequency", operator , operator_value , True)
14 operator_value = 0.8
15 operator = SingleOperator.GREATER_EQUAL
16 binarize(data , "ranking", operator , operator_value , True)
17

18 # PARAMETERS
19 dataset_unprivileged_group = {"frequency": 0}
20 dataset_privileged_group = {"frequency": 1}
21 dataset_positive_outcome = 1
22 threshold = 1.0
23 tolerance_value = 0.2
24

25 # FAIRNESS ASSESSMENT
26 metrics = FairnessMetric(
27 data ,
28 dataset_unprivileged_group ,
29 dataset_privileged_group ,
30 ground_truth_label_name ,
31 predicted_label_name ,
32 dataset_positive_outcome ,
33)
34 coverage = metrics.group_size("frequency == 0 and ranking == 1") /

metrics.group_size("ranking == 1")
35 print(coverage)
36 if abs(coverage) < threshold + tolerance_value:
37 print("Biased")
38 else:
39 print("Fair")

LISTING 6.10: Generated code for the TPL use case.

Listing 6.10 reports instead the generated code for the TPL use case. The code
follows the same structure of Listing 6.9, with some additional changes. The first
difference is shown on lines from 12 to 17. In particular, differently from the Uni-
versity use case where all the values were binary, here both frequency and ranking

Chapter 6. Low-Code Approaches for Software Fairness 92

columns contain continuous values. Hence, based on the definition of positive label
and sensitive groups specified in the model, those lines of code map values greater or
equal than 0.8 to 1 and values lower than 0.8 to 0. This binary mapping is needed
because all the fairness metrics available are defined on binary data [19], [194]. The
second main difference is about the adopted metric. As stated in Section 5.3.3, in this
use case, we use a custom fairness metric named coverage. Since this is a custom
metric, differently from the University use case, it is not directly defined as a function
in the FairnessMetric class. Instead, line 35 shows how this metric is implemented
in the code. In particular, it is implemented as the ratio between the values returned
by two calls of the group_size function. The input of the first function (i.e., the
numerator) is a string selecting libraries with frequency equal to 0 (i.e., unpopu-
lar libraries) and ranking equal to 1 (i.e., recommended libraries). The input of the
function in the denominator is instead a string selecting only recommended libraries
(i.e., ranking equal to 1).

1 from aif360.metrics import ClassificationMetric
2 from aif360.datasets import BinaryLabelDataset
3 import pandas as pd
4 import math
5

6 class FairnessMetric(ClassificationMetric):
7 def __init__(
8 self ,
9 df: pd.DataFrame ,

10 unprivileged_groups: dict ,
11 privileged_group: dict ,
12 true_label_name: str ,
13 predicted_label_name: str ,
14 positive_value: int
15):
16 ...
17 super().__init__(
18 self.dataset_true ,
19 self.dataset_pred ,
20 unprivileged_groups =[unprivileged_groups],
21 privileged_groups =[privileged_group])
22

23 def probability(
24 self ,
25 object: str ,
26 condition: str = ""
27) -> float:
28 probability = self.df.query(object).shape [0] / self.df.

shape [0]
29 if condition == "":
30 return probability
31 else:
32 return (
33 self.df.query(condition + " and " + object).

shape [0]
34 / self.df.shape [0]
35) / probability
36 ...

LISTING 6.11: Portion of the FairnessMetric class.

Finally, Listing 6.11 reports a portion of the FairnessMetric class implementa-
tion. As shown in line 6, this class extends the ClassificationMetric class from the
aif360 library. Thus, it inherits all the standard fairness metric implementations (i.e.,

Chapter 6. Low-Code Approaches for Software Fairness 93

the ones defined in the GroupFairnessMetric and IndividualFairnessMetric enu-
merations reported in Figure 5.4) from this library. In addition, this class provides
implementations of the functions reported in Figure 5.4 to define custom metrics.
For instance, in Listing 6.11 it is reported the implementation of the probability
function.

6.2.3 Evaluation

In this section, we present the evaluation of MODNESS by referring to the following
research questions (RQs):

RQ1 How do state-of-the-art toolkits allow users to explicitly specify customized
fairness definitions?

RQ2 Can MODNESS support the whole fairness assessment process, including
the automated phase?

RQ3 Is MODNESS able to overcome the limitations of current MDE-based ap-
proaches for fairness assessment?

In particular, we rigorously assess the expressiveness and correctness of MOD-
NESS, demonstrating how it effectively addresses the limitations of contemporary
state-of-the-art methods in assessing fairness.

In the following, we first present the set of use cases examined to answer the
RQs. Then, we address and answer each RQ.

Examined use cases

By carefully analyzing the approaches described in Table 3.2, we have identified
pertinent use cases utilized across the literature to evaluate fairness within various
domains. Given the vast array of potential scenarios, it is impractical to examine all
of them within this section. Therefore, we focus on widely embraced case studies,
specifically those covered by at least three distinct approaches. Moreover, to empha-
size the expressiveness of MODNESS, we introduce two additional case studies into
our comparative analysis. These case studies pertaining to the evaluation of pop-
ularity bias in recommender systems encompass a curated dataset of third-party
Java libraries and a curated dataset of Arduino hardware and software components,
respectively. Table 6.3 reports a short description of these use cases as well as refer-
ences to the approaches that have addressed them. Note how two of these use cases
have been used as running examples throughout this paper(i.e., University and TPL)
and are highlighted in the table. In the following, we provide detailed descriptions
of the other use cases and their associated datasets.

It is important to notice how, in this evaluation, we follow the related literature to
identify the sensitive group(s) and the positive outcome. In a normal use case, the sen-
sitive groups are instead identified based on the outcome of the fairness assessment,
starting from a set of possible sensitive variables (e.g., variables that are protected
by regulations [82]) and an outcome considered positive for the specific use case.
➤ ProPublica Recidivism (COMPAS) [153] - The Correctional Offender Management
Profiling for Alternative Sanctions (COMPAS) was an ML system used by judges in
the US to predict if a condemned person would have been a repeating offender in
the two years after their release. An investigation of this software showed that this
system had a bias against non-white women. In this case, the sensitive variables are

Chapter 6. Low-Code Approaches for Software Fairness 94

TABLE 6.3: The examined use cases. Use cases adopted as running
examples in the paper are highlighted in bold.

Name Domain Sensitive attribute(s) Positive outcome Existing approaches

COMPAS Social gender, race Non-recidiv [64],[104],[109], [102], [34], [105], [112], [35], [110], [98]

ADULT Social race, gender Income > $50.000
[97], [76], [106], [100], [104], [109] , [34], [105], [102], [112],

[35],[110],[98], [96],[100],[95]

GERMAN Financial gender Credit granted
[97],[100],[106], [104],[109], [102],

[102],[112], [34], [105], [35], [110], [34], [98],[96], [95]

BANK Financial age Client subscribed [106], [104],[109], [34], [105], [102], [97], [110]

RESYDUO IoT view, respect Item recommended [196]

UNIVERSITY Education gender Positive admission [74]

TPL RSSE frequency Library recommended [75]

race and gender, the favourable outcome is non-recidiv, and the unprivileged group is
non-white men.
➤ Adult Census Income (ADULT) [152] - This use case is about predicting whether
a person’s income is above $50,000 a year based on their personal information. This
system was biased against non-white women. Hence, the sensitive variables are gender
and race, the positive outcome is income higher than 50,000$ a year, and the unprivi-
leged group is non-white women.
➤ German Credit (GERMAN) [154] - This use case is about the adoption by a Ger-
man bank of an ML system to predict the granting of credit. This system has been
proven to be biased against women, i.e., women have a lower probability of getting
credit from the bank. In this case, the sensitive variable is gender, and the unprivi-
leged group is women. The positive outcome is having a credit granted.
➤ Bank Marketing (BANK) [195] - The Bank Marketing system was an ML system
developed for a phone call company to predict whether the client would subscribe
to a term deposit. This system was shown to be biased against people more than
25 years old. Hence, in this case, the sensitive variable is age, and the unprivileged
group is people with more than 25 years. The positive outcome is will subscribe.
➤ Resyduo dataset (RESYDUO) [196] - This dataset comprises all the Arduino
projects collected from the ProjectHub10 open-source repository. In particular, it in-
cludes 5,547 projects, 3,137 tags, 11,645 hardware components, and 1,802 libraries.
It is worth mentioning that this data has been used to feed a collaborative filtering-
based recommender system supporting Arduino project development [196]. Similar
to the TPL dataset, the scope of the fairness analysis is to measure how popularity
impacts the recommended items by considering two different sensitive variables for
each project, i.e., views and respects (i.e., the number of appreciations from users).
The former quantifies project popularity based on the number of users who view
it. The latter represents explicit feedback on project quality. Consequently, fairness
assessment can be conducted on two distinct disadvantaged groups, i.e., low viewed
and low respected projects. Hence, in this use case, the sensitive variables are views
and respect, and the positive outcome is recommendation. The unprivileged groups
are items with low views and low respect, respectively.

RQ1: State of the Art

To answer RQ1, we evaluate the existing approaches in terms of the elicited features
introduced in Section 3.1 (i.e., F1 - Bias definition, F2 - Abstract bias definition, F3 -

10https://projecthub.arduino.cc/

https://projecthub.arduino.cc/

Chapter 6. Low-Code Approaches for Software Fairness 95

Custom metric definition, F4 - Metric composition, F5 - Automated fairness assess-
ment, F6 - Tool availability). Furthermore, we discuss MODNESS by highlighting
the contribution compared to the examined works shown in Table 3.1.
F1 support - Based on our investigations, it is evident that only five of the analyzed
approaches can address both individual and group fairness. These approaches are
Fair-SMOTE, FairKit-learn, Astraea, FairML, and MANILA. In contrast, the other
tools are designed to focus exclusively on either individual or group fairness. No-
tably, MODNESS stands out by offering modeling constructs that comprehensively
cover both individual and group bias definitions. This flexibility is achieved by
drawing upon essential concepts extracted from surveys and empirical studies [19],
[31], [197].
F2 support - While tools like Fair-SMOTE, Fairkit-learn, FairML, or MANILA pro-
vide methods to assess several canonical individual and group bias definitions auto-
matically, only ASTRAEA offers a dedicated grammar that allows the user to define
any biases besides the traditional ones. MODNESS goes a step forward compared
to ASTRAEA by providing a tailored metamodel conceived to define fairness at two
different levels of abstractions, i.e., domain-level and dataset-level (e.g., refer to the
evaluation of the RESYDUO use case in Section 6.2.3, where, starting from the same
domain, two different fairness analyses are depicted selecting two different sensitive
attributes of the dataset).
F3 support - It is worth noting that only two approaches within our analysis allow
for the customization of metric definitions: Themis and Fairway. MODNESS pro-
vides the Function metaclass (see Section 5.3) to specify a dedicated operation on
sensitive variables defined in the specification phase. Additionally, the metamodel
incorporates a selection of significant metrics that have already been established in
the literature, serving as valuable tools for assessing fairness in various contexts be-
yond the original ones. In essence, MODNESS can be used to evaluate the statistical
parity of two sensitive groups that are not strictly bounded by the social domain.
Furthermore, it empowers users to define novel bias metrics (e.g., coverage [84]) nec-
essary for emerging domains, such as recommender systems, thereby adapting to
evolving research needs and applications.
F4 support - Among the examined strategies, only MANILA supports this feature
by modeling each metric as a feature and allowing their compositions by means of
aggregation functions. Meanwhile, MODNESS relies on the metamodel to compose
the defined metrics, thus pursuing the generalizability of the whole process in terms
of entities and their combinations.
F5 support - Although all the investigated tools offer automatic fairness assessment,
these approaches are generally confined to established use cases and state-of-the-art
metrics. In contrast, MODNESS is extendible and very flexible since it allows the
conceptualization of fairness in domains known in the literature and domains not
yet covered (i.e., recommender systems and novel use cases). Furthermore, it allows
for the creation of novel fairness metrics without sacrificing automation, making
it a powerful and adaptable tool for addressing the evolving landscape of fairness
assessment.
F6 support - Regarding the tool availability, it is important to note that all the scruti-
nized approaches offer a replication package, with the exceptions being TILE, AITEST,
and ASTRAEA. The majority of these approaches utilize Python libraries and frame-
works, primarily due to the fact that the tested models are machine learning-based.

Chapter 6. Low-Code Approaches for Software Fairness 96

Furthermore, both FairML and MANILA go a step further by offering code gener-
ation functionalities that automate the deployment and testing of the system as de-
fined during the setup phase. MODNESS adopts a comparable approach by utilizing
dedicated Acceleo templates, which are fed with models adhering to the specified
metamodel.

Answer to RQ1: Although offering a good degree of automation, existing ap-
proaches lack in supporting the customization of bias and fairness definitions.
MODNESS fills this gap by covering all the elicited features for bias definition,
fairness analysis specification, analysis implementation, and fairness assessment.

RQ2: Use Case Coverage

To address RQ2, we have selected five distinct use cases from those previously dis-
cussed in Section 6.2.3, encompassing various application domains, including social,
financial, education, recommender systems in software engineering (RSSE), and the
Internet of Things (IoT). The details of the five use cases, implemented using MOD-
NESS, are provided in Table 8.6. Specifically, for each use case, we specify the chosen
metric for assessment, the number of sensitive variables considered, and the MOD-
NESS outcome.

Note how two of these use cases (i.e., University and TPL) have already been
implemented throughout the paper to show the main capabilities of MODNESS and
are not reported in this Section.

TABLE 6.4: MODNESS implementation of the use cases. Use cases
adopted as examples throughout the paper are highlighted in bold.

Use case Domain Metric
Number of

sensitive vars
Outcome

(Expected)
MODNESS Assessment

result

COMPAS Social AO 2 (sex,race) 0.3 (≤ |0.2|) Biased

GERMAN
(BIASED) Financial EO 1 (sex)

-0.25 (≤ |0.2|) Biased

GERMAN
(DEBIASED)

-0.05 (≤ |0.2|) Fair

RESYDUO IoT GEI
1 (views 0.31 (≥ |0.8|) Biased

1 (respects) 0.28 (≥ |0.8|) Biased

UNIVERSITY Education SP 1 (sex) -0.15 (≤ |0.2|) Fair

TPL RSSE COV 1 (frequency) 0.29 (= |1.2|) Biased

Moreover, for the GERMAN use case, we conduct two separate analyses: the first
utilizing the original biased dataset and the second involving the same dataset after
applying a preprocessing algorithm designed to mitigate bias (specifically, the Debi-
aser for Multiple Variables algorithm presented in Chapter 4). This analysis scenario
exemplifies a typical scenario for MODNESS, where a user initially assesses the fair-
ness of the original dataset and subsequently verifies if the bias has been reduced
after employing a debiasing method.11 Finally, for the RESYDUO use case, we per-
form two distinct analyses, one considering the views sensitive variable and the other
focusing on the respects sensitive variable. This approach showcases MODNESS’s

11It is important to clarify that the mitigation of bias is beyond the scope of this approach, as MOD-
NESS primarily focuses on designing and implementing the fairness assessment workflow, as outlined
in

Chapter 6. Low-Code Approaches for Software Fairness 97

versatility and ability to handle different sensitive variables, further highlighting its
capabilities.

The implemented models and generated code for each use case are reported in
our replication package [49].

1 GroupBias "compas"{
2 definition: {
3 domain: "justice";
4 source:HUMAN_DISCRIMINATION;
5 sensitiveVariables: {
6 SensitiveVariable{
7 name: "gender";
8 values: "male","female";
9 },

10 SensitiveVariable{
11 name: "race";
12 values: "white","non -white";
13 }
14 };
15 positiveOutcome: "Non Recidiv";
16 unprivilegedGroup: {
17 SensitiveGroup{
18 name: "non -white men";
19 sensitiveValue: "race.non -white",
20 "gender.male";
21 };
22 };
23 privilegedGroup: {
24 SensitiveGroup{
25 name: "white women";
26 sensitiveValue: "race.white",
27 "gender.female";
28 };
29 };
30 };

LISTING 6.12: Bias definition for the COMPAS use case.

1 Dataset {
2 id: ’compas ’;
3 groundTruthLabelName: ’two -year -recid’;
4 predictedLabelName: ’prediction ’;
5 filePath: ’compas.csv’;
6 positiveOutcome: {
7 id: "non -recidiv";
8 mappingOutcome: "Non Recidiv";
9 value: { operator: EQUAL; value: 0.0; };

10 };
11 datasetSensitiveVariable: {
12 DatasetSensitiveVariable{
13 name: "sex";
14 mappingSensitiveVariable: gender;
15 values: {
16 SensitiveVariableValue{
17 id: "female";
18 mappingValue: "gender.female";
19 value: { operator: EQUAL; value: 0.0; };
20 },
21 SensitiveVariableValue{
22 id: "male";
23 mappingValue: "gender.male";
24 value: { operator: EQUAL; value: 1.0; };
25 }
26 }
27 },
28 DatasetSensitiveVariable{
29 name: "race";
30 mappingSensitiveVariable: race;
31 values: {
32 SensitiveVariableValue{
33 id: "white";

Chapter 6. Low-Code Approaches for Software Fairness 98

34 mappingValue: "race.white";
35 value: { operator: EQUAL; value: 1.0; };
36 },
37 SensitiveVariableValue{
38 id: "non -white";
39 mappingValue: "race.non -white";
40 value :{ operator: EQUAL; value: 0.0; };
41 }
42 }
43 }
44 };
45 };
46 datasetUnprivilegedGroup: {
47 id: "non -white -men";
48 mappingGroup: "non -white men";
49 sensitiveVariables: ("compas.sex.female",
50 "compas.sex.male");
51 };
52 datasetPrivilegedGroup: {
53 id: "white -women";
54 mappingGroup: "white women";
55 sensitiveVariables: ("compas.sex.male",
56 "compas.race.white");
57 };

LISTING 6.13: Excerpt analysis definition for the COMPAS use case.

The COMPAS use case. Concerning the Social domain, we replicated the COM-
PAS use case. Listings 6.12 and 6.13 shows the bias definition and an excerpt of the
fairness analysis definition, highlighting how multiple sensitive variables and inter-
sectional sensitive groups (i.e., sensitive groups identified by more than one sensi-
tive variable [80]) can be defined in MODNESS. As previously described, this use
case is about discrimination of non-white men in the prediction of recidivism. Hence,
we modeled the bias definition in MODNESS, specifying gender and race as sensi-
tive variables, non-recidiv as the positive outcome, non-white men as the unprivileged
group, and white women as the privileged group (see Listing 6.12).

Next, we defined our fairness analysis by specifying the dataset containing all
the related information (see Listing 6.13). In particular, we specified in the attributes
of the Dataset class that the ground truth labels are encoded in the two_years_recid
column. In contrast, the model predictions are encoded in the prediction column.
Then, we modeled that the positive outcome equals 1.0. Finally, we specified that
the sensitive variables are encoded in the race and sex12 columns where non-white
women have a value of 1 for both columns. After defining the dataset, we specified
the metrics for analysis. For this use case, we adopted the Average Odds (AO) fairness
metric, which is included in the ExistingFairnessMetric class. Finally, we specified
that this metric should be equal to 0 to have fairness, with a tolerance value of 0.2.

From such a model, MODNESS generates the code implementing the analysis.
The code follows the same structure of Listing 6.9 and is reported in our replication
package.

The GERMAN use case. Concerning the Financial domain, we implemented the
GERMAN use case, which is about the discrimination of women in credit granting.
Similarly to the COMPAS use case, we first specified in the bias definition the sen-
sitive variable (gender), the positive outcome (credit grant) and the privileged (men)
and unprivileged (women) groups. Next, we specified two different fairness anal-
yses, one involving the original biased dataset and another involving the debiased

12We refer to the original column names of the dataset reported in [153]

Chapter 6. Low-Code Approaches for Software Fairness 99

one. In both analyses, we modeled that the sex column encodes the gender sensitive
variable where women have a value equal to 1. In contrast, the positive outcome is
encoded in the credit column with a value equal to 1. In both analyses, we selected
the Equal Opportunity (EO) fairness definitions, specifying a threshold of 0 and a tol-
erance value of 0.2. The generated code follows the same structure of Listing 6.9 and
is reported in the replication package as well as the MODNESS implementation for
this use case.

The RESYDUO use case. Finally, for the IoT domain, we implemented the RESY-
DUO use case, which is about popularity bias in recommending software and hard-
ware Arduino components [196]. In the bias definition, we specified views and respect
as sensitive variables and high ranking as the positive outcome. Next, we defined
two sensitive groups: one identified by the views sensitive variable (i.e., the privi-
leged group is high-viewed items, while the unprivileged group is low-viewed items),
and one identified by the respect sensitive variable (i.e., the privileged group is high-
respected items, while the unprivileged group is low-respected items). Further, we
defined two different fairness analyses. The first one aims at assessing the amount
of popularity bias with respect to the number of views, while the second aims at as-
sessing the popularity bias with respect to the level of respects. In both analyses, we
specified that the predicted rank is encoded in the tot_recommendations column
and that we consider a rank high if it is greater than the 80% of the predicted ranks
(like done for the TPL use case). Next, in the first analysis, we specified that the
number of views is encoded in the views column and that an item is highly viewed
if its number of views is higher than 80% of the other items. Instead, in the second
analysis, we specified that the level of respect is encoded in the respects column
and that an item is highly respects if it has a respect level higher than 80% of the other
items. In both analyses, we modeled a custom metric used in the RecSys literature
named Generalized Cross Entropy (GEI)[198]. This metric measures how the probabil-
ity distribution of having an item of the privileged group recommended is different
from the probability of having an item of the unprivileged group recommended.
Following the metric definition, we specified that this metric should be equal to or
greater than 0.8 to have fairness. As for the other cases, the generated code follows
the same structure of Listing 6.9 and is reported in our replication package as well
as the MODNESS DSL implementation.

Altogether, the performed fairness assessment confirms that the bias is correctly
detected in all the considered use cases, meaning that MODNESS is capable of de-
tecting the biases defined at the model level.

Answer to RQ2: MODNESS has a level of expressiveness and correctness able to
model and successfully evaluate use cases from various domains, including so-
cial, financial, RSSE, and IoT. Our experiments demonstrate the extensive range of
MODNESS’s ability to define bias and fairness in different domains and its capa-
bility to automatically generate the relative experiments and hence assess fairness
in the considered use cases.

RQ3: Baselines Comparison

To address RQ3, we conducted a comparative analysis between MODNESS and
two MDE-based baselines for fairness assessment, namely FairML [112] and the
MANILA framework presented in Section 6.1. Assessing the quality of MDE-based

Chapter 6. Low-Code Approaches for Software Fairness 100

tools is daunting since they usually rely on tailored metamodels conceived for a spe-
cific application domain. Prior works have defined a set of quality metrics that inves-
tigate several aspects, such as expressiveness, completeness, or portability. Within
the scope of our paper, we follow the criteria proposed in [199] to establish two di-
mensions for facilitating comparison: expressiveness and automation. We frame these
aspects by referencing the set of features detailed in Section 3.1.2

– Expressiveness: This dimension measures the extent to which the tool enables
the modelling of bias definitions and relative fairness analysis (encompassing
features F2-F3-F4).

– Automation: This dimension evaluates the degree to which the tool stream-
lines the entire fairness assessment process (encompassing features F5-F6 plus
an additional feature describing the level of guidance for the user provided by
the tool in the fairness analysis specification).

These dimensions are assessed on a scale ranging from 1 to 3, based on the num-
ber of features provided by the tools for both expressiveness (i.e., F2, F3 and F4) and
automation (i.e., F5, F6 and guidance in the specification).

We model with the two baselines the use cases used to answer RQ2, and we use
them to evaluate these features. The comparison results, focusing on Expressiveness
and Automation, are presented in Table 6.5.

TABLE 6.5: Baseline comparison. For each baseline, we evaluate the
expressiveness and automation scores based on the features they pro-

vide.

Expressiveness Automation

Abstract
bias def.

Custom
metric def.

Metric comp.
Expr.
Score

Tool available Code generation
Spec.

guidance
Automation

Score

FairML ✗ ✗ ✗ 0 ✔ ✔ ✔ 3

MANILA ✗ ✗ ✔ 1 ✔ ✔ ✔ 3

MODNESS ✔ ✔ ✔ 3 ✔ ✔ ✗ 2

Expressiveness pertains to the extent to which the tools offer abstraction capa-
bilities to model a variety of heterogeneous use cases. To assess this aspect, we im-
plemented each of the use cases detailed in Section 6.2.3 with every baseline tool and
assessed their ability to define high-level custom bias definitions and custom metric
definitions and to compose different existing metrics. In the following, we describe
each tool in detail and explain how they provide or do not provide these features.

Similarly to MODNESS, FairML relies on an MDE-based infrastructure to define
fairness assessments using a dedicated DSL. In particular, the tool provides abstrac-
tions to specify standard metrics from the AIF360 library. However, the tool does not
provide abstractions to define high-level custom bias definitions and custom metrics
or to compose existing ones. Hence, FairML got 0 as score for Expressiveness.

As described in Section 6.1, MANILA relies on the ExtFM formalism to model
a fairness evaluation workflow as an SPL. However, it does not provide features to
compose or define custom metrics. Moreover, the tool does not provide features to
define high-level custom bias definitions. Hence, neither custom bias definition nor
custom metric features are supported. Instead, the tool provides a set of aggregation
functions to combine different metrics, providing the metric composition feature.
Hence, MANILA got 1 as score for Expressiveness.

MODNESS instead has been developed to address the limitations of current
baselines in defining and executing custom bias assessments. Hence, it provides

Chapter 6. Low-Code Approaches for Software Fairness 101

abstractions to define high-level custom bias definitions and custom metrics and to
compose existing ones. Moreover, like the two baselines, it provides abstractions to
use existing metrics from the AIF360 library. Hence, MODNESS got 3 as expressive-
ness score.

Regarding the degree of automation, both FairML and MANILA offer user guid-
ance when defining fairness assessments. FairML, for instance, employs a decision
tree to assist users in selecting the appropriate metric based on the analysis scope
they intend to pursue. On the other hand, as described in Section 6.1, MANILA em-
ploys ExtFM constraints to guide users in selecting a set of features that invariably
results in a correct (i.e., executable) experiment. As of the current development stage,
MODNESS does not provide this level of user guidance. It is important to note that
we plan to integrate MODNESS capabilities with MANILA to guide users through
the fair development process while providing extensive expressiveness capabilities
(see Section 5.4). Consequently, we assigned a score of 3/3 for the automation level
of FairML and MANILA, while MODNESS received a score of 2/3 for its current
automation capabilities.

TABLE 6.6: List of implemented use cases and assessment result.

FairML MANILA MODNESS

COMPAS 0.28 0.29 0.3

GERMAN -0.2 -0.23 -0.25

GERMAN
FAIR

-0.05 -0.1 -0.05

UNIVERSITY -0.15 -0.12 -0.15

TPL ✗ ✗ 0.29

RESYDUO ✗ ✗
0.31 (views)
0.28 (respect)

Finally, the list of assessment results for each use case implemented is presented
in Table 6.6. As can be seen, all the tools report comparable results for all the in-
volved use cases. The small variability among the results can be explained by the
different training-testing splits.

From this analysis, we have seen how all the selected baselines provide a high
level of automation in the definition and implementation of a fairness evaluation.
However, both baselines do not have a level of expressiveness fairness analyses defi-
nition in terms of domains (e.g., RSSE or IoT) and metrics (e.g., coverage or GEI).

Answer to RQ3: While all the examined baseline tools exhibit a high degree of au-
tomation throughout the fairness assessment process, both of them share a com-
mon limitation, i.e., they lack the ability to express fairness in different domains.
In contrast, MODNESS overcomes these limitations by offering a versatile frame-
work for modeling high-level bias definitions and specifying and implementing
custom fairness metrics tailored to specific application domains.

6.2.4 Threats to Validity

This section discusses possible threats that can hamper the results of the performed
evaluation.

Chapter 6. Low-Code Approaches for Software Fairness 102

Internal validity Concerning the proposed approach, it is possible that the meta-
model we have created and the supporting tools are not extensive enough to cover
all fairness assessment scenarios. However, we purposely considered different ap-
plication domains, including the one related to the popularity bias of recommender
systems in software engineering. Another potential threat of our study concerns the
macro-sources of bias we cover. In particular, we address algorithmic bias and un-
balanced group bias [19], [43], despite various other macro-sources of bias have been
identified over the years, such as confounding variables bias [43]. However, we believe
that our approach covers most of the bias case studies documented in the literature,
as they originate from macro sources of bias that we address. In addition, our pro-
posed metamodel is also designed to be extendable to model sources of bias that
are not currently addressed. We acknowledge that the code generation may not be
accurate due to some errors while running the Acceleo transformation. To mitigate
this, we linked the metamodel to the project programmatically, to avoid any possible
issue in running the code generation.

External validity In this respect, the results obtained in this paper may be valid
only for the considered datasets. To mitigate this threat, we diversified the datasets,
which have been collected from different sources and domains. Furthermore, we
demonstrated that the proposed approach could cover fairness conceptualization
and assessment also in the software engineering domain by considering popularity
bias in recommender systems. Another threat that may hamper the obtained results
is the choice of the baselines, i.e., we cannot conduct a quantitative comparison in
terms of metrics. To mitigate this, we conduct a qualitative analysis by reimplement-
ing the examined use cases using the selected approaches.

6.3 Conclusion

In this chapter, we introduced two low-code approaches designed to facilitate the
development of fair learning-based systems. The first approach is MANILA, a web-
based application based on the ExtFM for modeling fairness benchmarking work-
flow. We demonstrated how MANILA offers a degree of expressiveness and correct-
ness that enables the reproduction of the DEMV experimental evaluation detailed
in Chapter 4. However, despite its high expressiveness, MANILA does not support
modeling use cases, such as the TPL example presented in Chapter 2, where cus-
tom fairness metrics are utilized. To mitigate this threat, we proposed MODNESS,
a model-driven framework designed to conceptualize, design, implement, and ex-
ecute custom fairness assessment workflows. We demonstrated how MODNESS
provides a degree of expressiveness that overcomes existing model-driven baselines,
including MANILA. However, it provides a lower degree of automation.

The evaluations described demonstrate how these approaches complement one
another. By relying on the ExtFM formalism, MANILA guides data scientists in
establishing complete and accurate fairness development workflows. In contrast,
MODNESS, which is based on the MDE formalism, offers a significant level of ex-
pressiveness for defining and conducting fairness evaluations. In the future, we plan
to integrate these two approaches to create a system that assists data scientists and
domain experts in defining and executing fairness development workflows, even for
more unconventional use cases.

103

Chapter 7

Towards Early Detection of
Algorithmic Bias from Dataset Bias
Symptoms

In Chapters 5 and 6, we presented the modeling and the low-code implementa-
tions of the two standard workflows for fairness assessment and to identify the best
ML model and fairness-enhancing method combination presented in Chapter 2. As
highlighted in Chapter 2, those workflows are nowadays standards for the develop-
ment of fair learning-based systems, and a plethora of approaches have been pro-
posed following them, like [34]–[36] to mention a few. However, one limitation of
all those approaches (including MANILA and MODNESS) is that they require the
predictions of the underlying ML model as input to assess its bias. Hence, they can
only be performed after the model training or model deployment phases, which are late
steps of the learning-based systems development workflow shown in Figure 1.1.

For this reason, research interest has recently started to grow towards early bias
detection - i.e., having a glimpse of algorithmic bias at earlier stages of the learning-
based system development workflow. Shome et al. were the first authors to analyze
the relationship existing between Data Fairness Metric (DFM), i.e., metrics to assess
the bias in the training data, and their corresponding adaptation to the model’s pre-
dictions (Model Fairness Metric – MFM) [37]. However, their work focuses on a
limited set of metrics that do not cover all the possible fairness definitions available
in literature nowadays [19], [31].

In this chapter, we perform a further step by analyzing how the dataset’s struc-
tural features, namely bias symptoms, can be employed for the early detection and ex-
planation of algorithmic bias, i.e., bias inducted by the ML model. We extract those
symptoms using binary variables from 24 datasets well-known in the fairness liter-
ature. To the best of our knowledge, this represents the largest number of datasets
utilized in a fairness study focusing on tabular data. Next, we use those symptoms
to detect early signals of bias under three different bias definitions: Statistical Parity
(SP), Equal Opportunity (EOp), and Average (Equality) Odds (EO).

The rationale for analyzing bias symptoms is manifold. First, we aim to assess to
what extent bias symptoms can be employed to detect signals of bias in earlier steps
of a learning-based system development pipeline, allowing the early identification
of variables that could lead to high bias under a given definition. For instance, bias
symptoms could be employed in MANILA and MODNESS to suggest which dataset
features possibly lead to high bias in the system.

Secondly, symptoms of bias can be used to explain why a particular variable
might cause a specific type of bias in a system. This approach could be applied

Chapter 7. Towards Early Detection of Algorithmic Bias from Dataset Bias
Symptoms

104

in MANILA and MODNESS to provide a clearer explanation of the results from a
fairness analysis.

With this analysis, we aim to make practitioners and researchers aware of the
possibilities and challenges of adopting bias symptoms.

Referring to the challenges and contributions described in Chapter 1, the study
presented in this chapter constitutes the contribution CN3 proposed to address the
challenge CH3.

The rest of this chapter is structured as follows: Section 7.1 presents the Research
Question that driven our research; Section 7.2 describes in detail the methodology
that has been followed to collect the dataset of bias symptoms; Section 7.3 describes
the conducted empirical evaluation, while Section 7.4 provides the results. Section
7.5 discusses the main takeaways derived from our empirical evaluation. Section
7.6 reports possible threats to our work. Finally, Section 7.7 provides future work
directions and concludes this chapter.

7.1 Research Questions

This research is driven by the following research questions (RQ):

RQ1: Which relations exist between bias symptoms and Statistical Parity, Equal Opportu-
nity, and Average Odds definitions of bias?

This RQ aims to analyze the correlation existing between symptoms and bias
metrics. In particular, we compute the non-parametric Spearman correlation
coefficient [200] and observe how some fairness metrics are directly correlated
with specific symptoms. This allows those symptoms to be used as a proxy for
early bias detection or to explain why a variable may lead to high bias under a
given definition.

RQ2: To what extent do the identified bias symptoms allow the early detection of bias under
the three examined metrics?

In this RQ, we aim to evaluate the effectiveness of the identified symptoms
in reflecting bias according to the definitions of SP, EOp, and EO. To accom-
plish this, we first train three widely used classification methods: Multi-Layer
Perceptron (MLP), Random Forest (RF), and XGBoost, using the selected bias
symptoms. Next, we evaluate whether these classification methods can ac-
curately predict if a specific variable may lead to high or low bias in a Logistic
Regression base classifier given a set of symptoms extracted from that variable.

RQ3: Which symptoms are the most helpful in early prediction of Statistical Parity, Equal
Opportunity, and Average Odds?

This RQ integrates the results obtained in RQ1 by identifying which features
are perceived as the most relevant by the employed classifiers for early bias
prediction. To achieve this, we compute the importance of each feature in the
classification task performed to answer RQ2 by using the model-agnostic per-
mutation importance algorithm [201].

RQ4: Do different base classifiers influence the ability of bias symptoms in representing high
and low values of the examined bias metrics?

This RQ extends RQ2 by assessing how the employed symptoms are effective
in detecting variables that could possibly lead to high or low bias in base clas-
sifiers different from Logistic Regression. In particular, we consider MLP and

Chapter 7. Towards Early Detection of Algorithmic Bias from Dataset Bias
Symptoms

105

RF as base classifiers and show how the effectiveness of classification methods
trained on bias symptoms is consistent with the results shown in RQ2.

7.2 Methodology

In this section, we describe the methodology we followed to identify the bias symp-
toms used for early bias identification. First, we describe the bias metrics considered
in this work. Second, we describe the identified symptoms and explain the rationale
behind their selection. Third, we define the process of collecting those symptoms
and experimenting with them by creating a dataset of bias symptoms starting from
24 datasets from the fairness literature.

7.2.1 Selected fairness metrics and relative thresholds

In this study, we focus on Statistical Parity Difference (SP), Equal Opportunity Differ-
ence (EO), and Average Odds (AO) fairness metrics. As discussed in Chapter 2, these
metrics implement the fairness definitions most adopted in the literature [43], [80],
[103]. Additionally, these metrics fall into two distinct categories of fairness defini-
tions [78]: SP is classified under the independence category, while both EO and AO
are categorized under the separation category.

Building on the DEMV analysis discussed in Chapter 4, we consider absolute
values for all these metrics. In this context, a value of zero indicates optimal fairness,
while a value of one signifies complete bias.

It is important to note that all these metrics depend on specific outcomes of an
ML model, and different models may produce varying outcomes. Hence, predicting
the exact value of those metrics from dataset statistics without considering any as-
pect of an ML model could be unrealistic. For this reason, in this work, we do not
focus on predicting their exact value but rather on detecting if they exceed a given
threshold, which indicates that an ML model may suffer from bias. In particular, we
consider the following thresholds to distinguish High and Low bias: 0.2 for SP (fol-
lowing the 80% rule [27], [82]), 0.10 for EO, and 0.15 for AO. Since there is still no
agreement on which threshold to use for EO and AO [79], [191], these values have
been empirically selected based on the median scores obtained in our bias symptoms
dataset (see Section 7.2.4).

7.2.2 Symptoms identification

The first step in our work was the identification of characteristics for the early iden-
tification of variables leading to High bias with respect to the thresholds previously
discussed. Such characteristics represent bias symptoms, which have been selected by
analyzing the metrics formulations shown in Chapter 2, performing empirical anal-
yses of the datasets employed in our study (see Section 7.2.3), and reading fairness-
related works. In total, we have identified 13 different symptoms, which are sum-
marized in Table 7.1. The symptoms are the following:

• Data Statistical Parity (DSP): This value is a version of SP which considers
ground truth labels instead of the model’s predictions (i.e., |P(Y = 1|S = 0)−
P(Y = 1|S = 1)|) [81].

• Unprivileged Positive Probability (UPP) and Privileged Positive Probability
(PPP): These values represent the single probabilities that compose the above
symptom [81].

Chapter 7. Towards Early Detection of Algorithmic Bias from Dataset Bias
Symptoms

106

TABLE 7.1: Bias Symptoms Overview

Symptoms Formulation Legend

DSP |P(Y = 1|S = 0)− P(Y = 1|S = 1)| Y: Outcome, S: Sensitive attribute (0 or 1)

NPD P(Y = 0|S = 0)− P(Y = 0|S = 1) Y: Outcome, S: Sensitive attribute

UPP P(Y = 1|S = 0) Probability of positive outcome given S = 0

PPP P(Y = 1|S = 1) Probability of positive outcome given S = 1

Gini Index G = m
m−1 ·

(
1 − ∑m

i=1 f 2
i
)

m: Number of classes, fi: Frequency of class i

Simpson Diversity D = 1
m−1 ·

(
1

∑m
i=1 f 2

i
− 1
)

m: Classes, fi: Frequency of class i

Shannon Diversity S = −
(1

ln m

)
∑m

i=1 fi ln fi m: Classes, fi: Frequency of class i

IR IR = min({ f1...m})
max({ f1...m}) f1...m: Frequencies of classes

Unpriv Group Unbal
Priv Group Unbal

Wobs
Wexp

Wobs: Observed group size
Wexp: Expected group size

Kurtosis Kurtosis = 1
n ∑n

i=1(xi − x̄)4/σ4 n: Sample size, xi: Data point, x̄: Mean, σ: Std. deviation

Skewness Skewness = 1
n ∑n

i=1(xi − x̄)3/σ3 xi: Data point, x̄: Mean, σ: Std. deviation

Kendall’s τ τ = (C−D)
(n

2)
C: Concordant pairs, D: Discordant pairs, n: Observations

Mutual information J(Y, Z) = 1
2 E
∫
(Zs − Ẑs)⊤(Zs − Ẑs) ds Y, Z: Random variables, Ẑs: Estimated Z

• Gini Index, Simpson Diversity, Shannon Diversity, and Imbalance Ratio
(IR): These values have been used in [122] to measure the unbalance in the
values of a sensitive variable. In [122] the authors show how these values are
able to reflect variations in SP, EO, and AO. Following their approach, we 0-1
normalize these values such that, for Gini, Simpson, and Shannon, a value of
0 means that a variable is entirely unbalanced, while a value of 1 means that a
variable is fully balanced. Concerning IR, a value of 1 means that the variable
is entirely unbalanced, while a value of 0 means full balance.

• Unprivileged Group Unbalance and Privileged Group Unbalance: These
values are used to represent the unbalance of a variable with respect to the pos-
itive value of the ground truth label. In particular, they are the ratio between
the expected and observed sizes of the unprivileged and privileged groups
with respect to the ground truth label (Wobs

Wexp
). A value of one means that the

groups are fully balanced (i.e., the ratio of items having a positive and nega-
tive label value is the same), a value > 1 means that the group is oversampled
(i.e., items having a positive label are higher than expected). In contrast, a
value < 1 implies that the group is undersampled (i.e., items having a posi-
tive label are lower than expected). These values have been used by previous
works to develop methods able to mitigate unbalanced groups bias [43], [86].

• Kurtosis and Skewness: These values have been included to represent the
distribution of a variable. They have been used by several works in the Auto
ML domain, and it has been shown how they can influence the predictions of
an ML model [202]–[204].

• Kendall’s τ: This value represents the correlation between a variable and the
ground truth label. We adopted Kendall’s τ to measure the correlation because
it is non-parametric and more robust than the other non-parametric Spear-
man’s correlation coefficient [200]. It ranges between -1 and 1, where -1 means
absolute negative correlation, 1 means absolute positive correlation, and 0 im-
plies no correlation. Intuitively, a variable shall be highly correlated with the
ground truth label to lead to High bias in the predictions of a model. To confirm

Chapter 7. Towards Early Detection of Algorithmic Bias from Dataset Bias
Symptoms

107

this intuition, we computed the Kendall τ between each binary variable and
the ground truth label on 24 datasets from the fairness literature (see Section
7.2.3) and then grouped the results by variables having High and Low values
of SP, EO and AO following the thresholds defined in Section 3.1.1. Figure 7.1
shows the mean and the 95% confidence interval of the Kendall τ grouped by
high and low values of each bias metric: variables with high values of SP and
AO are also more positively correlated with the ground truth label. We also
computed the Welch’s t-test (a non-parametric test to assess the null hypothesis
that two groups with different numbers of samples have the same mean [205]),
which confirmed a statistically significant difference of the means concerning
SP and AO (following previous works [15], [43], we consider a statistical test
significant if the p-value is < 0.05).

• Mutual Information: This value is a non-parametric metric that measures the
mutual dependency between two random variables (continuous or discrete).
It ranges between 0 and 1, where 0 means complete independence, while 1
means complete dependence [206]. Like Kendall’s τ, we included this metric
to represent how much dependency exists between a variable and the ground
truth label. As before, we empirically compared the mean values of Mutual
Information between items with high and low values of SP, EO, and AO. Fig-
ure 7.2 reports the results of our evaluation. Differently from Kendall’s τ, we
observe a statistically significant difference in the mean values for all the con-
sidered bias metrics. In particular, the mean Mutual Information is higher for
items with higher bias values.

7.2.3 Dataset Creation

We employed 24 tabular datasets from the literature on bias and fairness [77], [119],
[221], [222]. The list of the employed datasets and additional statistics are reported
in Table 11.2. In particular, we selected datasets that are: publicly available, suitable
for classification tasks, and contain at least one binary variable different from the
label. It is worth noticing that, differently from other works on fairness [80], [98],
[223], we employ both binary and multiclass datasets, i.e., where the possible values
of the label are > 2.

Before starting the symptoms extraction process, all the datasets were prepro-
cessed by removing missing values and one-hot-encoding categorical columns. Af-
ter this process, each dataset has been split into training (80%) and testing (20%) sets.
The train set has been used to train a Logistic Regression (LogReg) Base Classifier [53].

Low High
p-value: 9.45 * 10 7

0.00

0.01

K
en

da
ll's

 T
au

Statistical Parity

Low High
p-value: 0.6

Equal Opportunity

Low High
p-value: 0.03

Average Odds

FIGURE 7.1: Mean and 95% confidence interval of Kendall τ between
binary variables and ground truth labels grouped by High and Low
SP, EO and AO values. For each metric, we report the Welch’s t-test

p-value.

Chapter 7. Towards Early Detection of Algorithmic Bias from Dataset Bias
Symptoms

108

Low High
p-value: 9.33 * 10 37

0.000

0.005

0.010

0.015

0.020

M
ut

ua
l I

nf
or

m
at

io
n

Statistical Parity

Low High
p-value: 3.12 * 10 6

Equal Opportunity

Low High
p-value: 1.01 * 10 18

Average Odds

FIGURE 7.2: Mean and 95% confidence interval of Mutual Informa-
tion between binary variables and ground truth labels grouped by
high and low SP, EO, and AO values. For each metric, we report the

Welch’s t-test p-value.

TABLE 7.2: List of adopted datasets

Datasets Domain Positive Label a Label Type Reported Sens. Var. Binary Vars.

Adult [207] Social Income > 50K (1) Binary sex 902

Arrhythmia [208] Health Normal (1) Multiclass gender 318

Bank [195] Economy Subscribed (1) Binary age 440

Campus Recruitment [209] Education Placed (1) Binary gender 155

CMC [155] Health Frequent use (2) Multiclass wife religion 30

COMPAS [153] Justice No recidivism (0) Binary sex 1371

Credit Card [210] Fraud Detection No default (1) Binary sex 10

Crime [156] Justice Low crime (100) Multiclass black people 21

Diabetes Hospitals [211] Social Readmitted (0) Binary gender 709

Drug [158] Health No drug use (0) Multiclass gender 20

German [154] Economy Good credit (1) Binary age 518

Heritage Health [212] Social Admitted (1) Binary gender 171

Hearth Disease [213] Health No disease (0) Binary sex 38

IBM Analytics [214] Social No attrition (0) Binary gender 290

Law School [74] Education Admitted (2) Multiclass race 50

Obesity [215] Health No obesity (0) Binary gender 60

Parkinson Monitoring [159] Health No Parkinson (0) Binary sex 20

Resyduo [196] RecSys Recommended (1) Binary views 10

Ricci [216] Education High Score (1) Binary race 47

SCG-RHC [217] Health No health challenge (0) Binary gender 61

Student Performance [218] Education Passed (1) Binary sex 309

US Census [219] Social High income (1) Binary sex 150

Vaccine [220] Social Vaccine trust (0) Binary gender 210

Wine [160] Food High quality (6) Multiclass type 20

a We report in brackets the corresponding value in the dataset.

Previous works on fairness have driven our selection of LogReg as a base classifier
[43], [44], [80], [223]. Following the same related works, we employed the LogReg
implementation from the scikit-learn Python library [145] with default hyperparam-
eters.

After training the model, we use the test set to predict the label needed to com-
pute ground truth values of SP, EO, and AO following the formulations provided in
Section 7.2.1. The test set has also been used to extract the bias symptoms. Follow-
ing the definition of privileged and unprivileged groups [19], we selected all binary
columns from each dataset and computed the bias metrics and symptoms for any of
each. For each binary variable, we assumed that 0 identifies the unprivileged group,

Chapter 7. Towards Early Detection of Algorithmic Bias from Dataset Bias
Symptoms

109

Train
80%

5-fold

Test
20%

Preprocessed
dataset

Preprocessing

Dataset of Bias Symptoms Creation

SP, EO
AO

Bias
symptoms

Bias
Symptoms

Dataset

Postprocessing

Bias Symptoms
Classification

Dataset

Binary
Variable

Train
Base Classifier
(LogReg)

Predictions

Raw
Dataset

FIGURE 7.3: Dataset creation workflow

while 1 identifies the privileged group.1 The positive label of each dataset has been
derived by its relative source paper and is reported in Table 11.2. To compute SP, EO,
and AO, we adopted the implementations provided in [43], which are an extension
of the metrics available in the IBM AIF360 library [27] for the multiclass classifica-
tion task. It is worth noticing that, as described in Section 7.2.2, the bias symptoms
are computed on the ground truth label of the testing set and not on the LogReg
predictions. To increase the overall amount of collected bias symptoms, we repeat
the whole train and test phase five times using a 5-fold approach (i.e., on each fold,
we select a different subset of data for testing and the rest for training). The ground
truth bias metrics and symptoms compose our bias symptoms dataset. However, since
we are interested in detecting variables leading to high bias, we performed a postpro-
cessing operation to map each metric value into low (i.e., 0) and high (i.e., 1) classes
using the thresholds defined in Section 3.1.1. Finally, we filtered the symptoms to
remove any possible redundant feature which could influence the early detection
of bias. Following the work from Mastropaolo et al. [224], we applied the redun
algorithm to select features not affected by multicollinearity [225]. This algorithm it-
eratively removes independent variables, determining how well each of them can be
predicted using the remaining ones. The process continues until no variable can be
predicted with high confidence using the remaining ones.2 The algorithm detected
two redundant variables (Privileges Positive Probability and Kurtosis) which have been
removed from the dataset, yielding a total of 11 bias symptoms.

7.2.4 Bias symptoms dataset description

In the following, we report some statistics about the collected bias symptoms dataset.
The dataset comprises 5,930 instances (i.e., one row for each binary variable of the

1The choice of values encoding the privileged and unprivileged groups only impacts the sign of the
bias metrics. However, since we consider absolute values, this choice did not influence our results.

2To assess the prediction confidence, the algorithm uses the R2 score with a threshold of 0.8

Chapter 7. Towards Early Detection of Algorithmic Bias from Dataset Bias
Symptoms

110

datasets reported in Table 11.2 repeated five times following the 5-fold process re-
ported in Section 7.2.3) and 14 features (i.e., the 11 symptoms selected using the
process described in Section 7.2.2 plus the three bias metrics).

Statistical Parity Equal Opportunity Average Odds
0.0

0.5

1.0

Va
lu

e

FIGURE 7.4: Median and inter-quartile range of SP, EO, and AO val-
ues in the Symptoms’ Bias Dataset

The comparison of raw SP, EO, and AO values (i.e., before their 0-1 mapping)
is shown in Figure 7.4. We observe how the metrics have a different distribution.
In particular, SP has a higher median (0.19) compared to EO (0.09) and AO (0.12).
The nature and formulation of those metrics could explain this diversity in median
scores. SP measures the difference in positive predictions between privileged and
unprivileged groups, disregarding the ground truth values (see Equation 2.1). On
the contrary, EO measures the difference in True Positive Rates (TPR) (i.e., positive
predictions of the ML model where the ground value is also positive, see Equation
2.3) while AO measures the difference in TPR and False Positive Rates (FPR) (i.e.,
positive predictions of the ML model where the ground value is non-positive, see
Equation 2.4) between the two groups.

A higher median value for SP suggests that this metric captures biases that may
not be directly linked to differences in TPRs and FPRs. For example, this could occur
in situations where the distribution of positive ground truth labels in the dataset is
imbalanced towards one group. In such cases, the LogReg model might accurately
identify the ground truth positive labels for both groups (resulting in a lower EO
value), yet the percentage of positive predictions could still be higher for one group
(indicating a higher SP difference).

0.0 1.0
Statistical Parity

0.00

0.25

0.50

0.75

1.00

P
riv

 U
nb

al
an

ce

Equal Opportunity = 0.0

0.0 1.0
Statistical Parity

Equal Opportunity = 1.0

FIGURE 7.5: Distribution of Privileged Group Unbalance between items
with high and low values of SP and EO

To investigate this difference better, we computed the distribution of the Privi-
leged Group Unbalance symptom (see Section 7.2.2) for items having a high and low
value of SP and EO. The distribution is reported in Figure 7.5 and shows how this
symptom is generally lower for items having higher SP and lower EO, indicating an
unbalance in the label’s distribution.

Chapter 7. Towards Early Detection of Algorithmic Bias from Dataset Bias
Symptoms

111

However, at the same time, we observe a high positive correlation between SP
and AO. In contrast, the correlation between EO and the other two metrics is lower
(see Table 7.4). Those correlations could be interpreted as high SP values are mostly
explained by higher FPR rather than TPR.

For this reason, we may conclude that the difference in SP, EO, and AO values
could be partially explained by two factors. First, some datasets have an imbalance
in the ground truth distribution between privileged and unprivileged groups (caus-
ing EO to have a lower median than SP and AO). Second, a higher median value of
AO compared with EO could be explained by a higher number of FPR for one of the
two groups, which highlights a biased behaviour of the underlying classifier.

Low High
0.0

0.2

0.4

0.6

P
er

ce
nt

ag
e

0.51 0.49

Statistical Parity

Low High

0.52
0.48

Equal Opportunity

Low High

0.53
0.47

Average Odds

FIGURE 7.6: Percentage of items with high and low values of SP, EO,
and AO

Finally, Figure 7.6 reports the percentage of instances with high and low SP, EO,
and AO values after their mapping based on the thresholds mentioned in Section
7.2.1. Recall how the thresholds have been selected from previous works [27], [82]
and by looking at the raw values’ distribution.

7.3 Evaluation

In this section, we describe the experimental evaluation conducted to answer our
RQs.

7.3.1 Experimental Settings

RQ1: Correlation Analysis

To answer this RQ, we computed the non-parametric Spearman correlation to glimpse
the relation between the different symptoms and raw bias metrics (i.e., before the
postprocessing mapping to 0 and 1) [200]. While performing the correlations, we
also computed their p-values to assess their statistical significance.

RQ2: Early Bias Detection

The evaluation workflow performed to answer this RQ is depicted in Figure 7.7. We
employ three ML classifiers to predict High or Low values of SP, EO and AO. The clas-
sifiers are Multi-Linear Perceptron (MLP), Random Forest (RF), and Extreme Gradi-
ent Boosting (XGB). We have chosen these methods because they have been widely
adopted for classification tasks and provide a good trade-off between computational
efficiency and effectiveness in the predictions [43], [80], [98], [226]. We employ the

Chapter 7. Towards Early Detection of Algorithmic Bias from Dataset Bias
Symptoms

112

D2

...

Dn-1

 5-Fold Cross Validation

Train Metric
Classifier

 Bias
Predictions

(SP, EO, or AO)

2

Classification
Metrics

Bias
Symptoms

Dataset

D2

...

Dn-1

 5-Fold Grid Search Optimisation 1

Search Model
Hyper-Parameters

Best Model
Hyper- Params.

D1

Dn

Train
(80%

)
Test
(20%

)

D1

Dn

Train
(80%

)
Test
(20%

)

Trained Metric
Classifiers

(MLP, RF, XGB)

FIGURE 7.7: RQ2-RQ4 Experimental Workflow

Python implementation of the ML models [145], [227] and, for each metric to predict,
we first perform a 5-fold grid search optimisation of their hyper-parameters (step 1
in Figure 7.7). The list of adopted hyper-parameters for each task is reported in our
appendix [50]. The next step concerns the prediction of high and low metric values.
To avoid possible data selection bias in the computation of effectiveness metrics, we
perform a 5-fold cross-validation using symptoms extracted from 80% of the original
biased datasets for training and the rest for testing (step 2 in Figure 7.7). Note that
the grid search optimization is only used to select the best hyper-parameters of the
models, while the classifiers are re-trained from scratch during the cross-validation
phase. The whole workflow has been repeated for each bias metric to predict.

RQ3: Feature Importance

We first train the classifiers employed for RQ2 with the full bias symptoms dataset
and then analyze the feature importance in predicting the single metrics. To assess
feature importance, we use the widely adopted permutation importance technique,
which is a model-agnostic approach that involves randomly shuffling the values of
a single feature and observing the resulting degradation of the model’s score [201].
For each model, we permute each dataset feature 10 times.

RQ4: Relation with Base Classifier

We adopted RF and MLP as base classifiers in the Dataset Creation process described
in Figure 7.3. The selection of these methods is based on their prior use in works
regarding fairness [43], [80], [226] and because they natively support multi-class
classification tasks. Following the works cited above, we adopted the default hyper-
parameters from the scikit-learn Python library. After extracting the bias symptoms
from these new base classifiers, we repeat the same evaluation process to address
RQ2 (see Figure 7.7).

7.3.2 Metrics

We adopt Accuracy (Acc) [228], Precision (Prec) [229], Recall (Rec) [229], F1 Score (F1)
[230], and AUC Score [231] to assess the effectiveness of the prediction of High or Low
bias metric values. We choose Acc, Prec, Rec, and F1 because they have been widely
adopted in previous fairness works [15], [80]. Accuracy is a widely adopted metric
in classification tasks which measures the percentage of correct outcomes over the

Chapter 7. Towards Early Detection of Algorithmic Bias from Dataset Bias
Symptoms

113

whole model’s predictions. Precision, Recall, and F1 Score are instead used to com-
pute the model’s ability to identify true positives. In particular, Precision measures
the ability of the classifier not to provide false positives, Recall measures the classi-
fier’s ability to identify all the true positives, while F1 Score is the harmonic mean
between Precision and Recall. AUC is instead defined as the area under the Receiver
Operating Characteristic (ROC) curve and measures how the TPR and FPR change at
different classification thresholds. We adopted this metric to have a more compre-
hensive view of the classifier’s ability in early detecting high bias values. The formal
definition of those metrics is provided in Table 11.1.

TABLE 7.3: Adopted metrics

Metric Definition

Accuracy (Acc) [228] TP+TN
TP+TN+FP+FN

Prediction (Prec) [229] TP
TP+FP

Recall (Rec) [229] TP
TP+FN

F1 Score (F1) [230] 2∗TP
2∗TP+FP+FN

Area Under Curve (AUC) [231]
∫ 1

0 TPR(FPR)d(FPR)

For the RQ3, we consider AUC as a reference metric to compute feature impor-
tance since it gives a wider view of a model’s effectiveness [231].

7.3.3 Statistical Tests

We perform the Kruskal-Wallis H-test, i.e., a non-parametric test to verify the null hy-
pothesis that the population medians of multiple groups are equal [232], to check if
there is any statistically significant difference between the effectiveness of the em-
ployed classifiers in RQ2 and RQ4. In addition, we perform the Mann-Whitney U test
(a nonparametric test of the null hypothesis that the distribution of two samples is
the same [233]) to group symptoms leading to a non-statistically significant AP loss
in the RQ3. Following previous work [15], a statistic is significant if its p-value is
< 0.05.

7.4 Results

In the following, we report the main results of our evaluation.

7.4.1 RQ1: Correlation Analysis

Table 7.4 reports the Kendall τ correlation between the different bias symptoms and
raw fairness metrics. In the table, correlations > |0.95| are highlighted in grey, while
non-statistically significant correlations (i.e., with a p-value ≥ 0.05) are marked with
an asterisk (*).

Correlations between bias symptoms

The first eleven rows and ten columns in Table 7.4 report the correlation between the
collected bias symptoms. We first observe a high positive correlation between Skew-
ness and Gini scores (0.984) and between Simpson and Shannon scores (0.99). The high

Chapter 7. Towards Early Detection of Algorithmic Bias from Dataset Bias
Symptoms

114

TABLE 7.4: RQ1: Correlation between symptoms and raw bias met-
rics

Mutual Info UPP Unpriv Unbal Priv Unbal Skewness Gini Simpson Shannon IR DSP SP EO AO

Kendall τ 0.015* 0.018 -0.038 -0.071 0.015* 0.016* 0.026 0.025 0.001* 0.042 0.069 -0.008 0.039*
Mutual Info - 0.148 0.083 -0.007* -0.274 -0.275 0.275 0.272 0.295 0.341 0.264 0.144 0.181
UPP - - 0.132 -0.001* -0.059 -0.055 0.571 0.566 0.125 0.105 0.095 0.301 0.006
Unpriv Unbal - - - -0.428 -0.001* 0.007* 0.026 0.027 0.069 -0.0* -0.009* -0.014* 0.051
Priv Unbal - - - - -0.117 -0.118 0.093 0.092 0.105 -0.074 -0.068 0.029* -0.266
Skewness - - - - - 0.984 -0.277 -0.268 -0.836 0.262 0.378 0.387 0.302
Gini - - - - - - -0.280 -0.272 -0.834 0.254 0.362 0.384 0.290
Simpson - - - - - - - 0.99 0.336 0.065 0.102* 0.306 -0.053
Shannon - - - - - - - - 0.326 0.066 0.104* 0.308 -0.050
IR - - - - - - - - - -0.306 -0.432 -0.412 -0.389
DSP - - - - - - - - - - 0.747 0.559 0.547

SP - - - - - - - - - - - 0.480 0.703
EO - - - - - - - - - - - - 0.291

positive correlation between Skewness and Gini is particularly surprising. Skewness
and Gini are two metrics used to measure different aspects of a data distribution.
However, since the variables from which we extracted those symptoms are binary,
both Skewness and Gini reflect possible unbalance in the 0, 1 distributions. However,
Skewness is equal to 0 in the case of balanced data, while it is lower or greater than
0 in the case of unbalance of one of the two classes. On the contrary, the Gini index
is equal to 0 in case of complete unbalance and equal to 1 in case of perfect balance.
Hence, the correlation between those two metrics should intuitively be negative be-
cause, in the case of perfect data balance, Skewness tends to 0 while Gini tends to
1.

100

50

0

50

100

S
ke

w
ne

ss

(A) Skewness Distribution

0.0

0.2

0.4

0.6

0.8

1.0

G
in

i

(B) Gini Distribution

0.0 0.5 1.0
Gini

100

50

0

50

100

S
ke

w
ne

ss

(C) Skewness-Gini Rela-
tionship

FIGURE 7.8: Distribution and relationship between Skewness and
Gini symptoms

To better investigate this aspect, we analyze the relation between Gini and Skew-
ness scores and the distribution of those symptoms. The plot showing this informa-
tion is reported in Figure 7.8. As shown by the boxplots in Figures 7.8a and 7.8b,
Skewness presents a higher variability compared to Gini, meaning how it is more
sensitive to data unbalance. At the same time, we observe in Figure 7.8c how Gini
slightly increases as Skewness becomes positive, but always being close to zero. As
expected, when Gini is equal to one, Skewness is equal to zero, but we observed only
one instance showing this pattern. Hence, we may conclude how the high positive
correlation between these two metrics could be explained by a slight increase of Gini
when Skewness becomes positive. However, we also observe how the Gini index may
not always properly reflect data unbalance.

At the same time, we also observe a high negative correlation between IR and the
Skewness (−0.836) and Gini (−0.834) symptoms. This negative correlation is expected
since IR tends to one in case of unbalanced data and zero in case of balanced data.
Hence, it has an inverse relationship with the other values.

Chapter 7. Towards Early Detection of Algorithmic Bias from Dataset Bias
Symptoms

115

The high correlation between Simpson and Shannon symptoms is also expected
since both metrics reflect diversity in the data. However, in a binary context, those
symptoms may tend to report the same information [234].

Finally, it is worth noticing how, even if highly correlated, these symptoms have
not been removed by the redun algorithm (see Section 7.2.3). For this reason, they
have been included in the final bias symptoms dataset.

Correlation between symptoms and fairness metrics

The first eleven rows and last three columns of Table 7.4 report the correlation be-
tween bias symptoms and metrics. We observe a high positive correlation between
Data Statistical Parity and SP (0.747). Recall how the Data Statistical Parity has the
same formulation of SP but considers ground truth values instead of the model’s
predictions. Hence, if the base classifier correctly predicts the ground truth values,
this symptom may correctly reflect SP. This result also aligns with what has been ob-
served in previous research [37]. The Data Statistical Parity also positively correlates
with EO (0.559) and AO (0.547), highlighting how this symptom can also partially
explain the value of those metrics.

The Kendall τ correlation between a binary variable and a label does not instead
correlate with any of the bias metrics (0.069, −0.008, and 0.039 between SP, EO, and
AO, respectively).3 This means that the correlation between a sensitive variable and
the ground truth label may not be used to explain bias. The same holds for the Priv-
ileged and Unprivileged Unbalance symptoms. However, we also observed in Section
7.2.4 how items with high SP and low EO tend to have, on average, a lower Privileged
Unbalance.

Correlation between fairness metrics

The last two rows and two columns of Table 7.4 report the correlation between fair-
ness metrics. We observe a high positive correlation between SP and AO (0.703),
while the correlation with EO is lower (0.480 with SP and 0.291 with AO). Those re-
sults align with the analysis of the metrics distributions performed in Section 7.2.4.
In particular, they highlight how the sources of bias could be mainly identified by:
i) an unequal distribution of ground truth labels among the privileged and unprivi-
leged groups and ii) a difference in FPR between the two groups.

Answer to RQ1: We can take the following main takeaways from this analysis of
correlations: i) High correlations between symptoms can be mostly explained by
their definitions and the fact that they are applied to binary variables. ii) Gini may
not fully reflect unbalance in a binary context. iii) DSP highly reflects the varia-
tions of SP and partially of EO and AO. iv) The Kendall τ correlation between a
sensitive variable and a ground truth label does not correlate with any bias met-
ric. v) The bias exposed by a LogReg base classifier could be mostly explained by
either an unequal distribution of ground truth positive labels between the groups
or by a high difference in FPR.

7.4.2 RQ2: Early Bias Detection

Table 7.5 reports the mean and standard deviation of the effectiveness metrics de-
scribed in Section 7.3.2. In the table, rows refer to effectiveness metrics, and columns

3Note how the correlation between Kendall τ and AO is non-statistically significant.

Chapter 7. Towards Early Detection of Algorithmic Bias from Dataset Bias
Symptoms

116

TABLE 7.5: RQ2: Mean, standard deviation and Kruskal-Wallis H-test
p-value of effectiveness metrics for MLP, RF and XGBoost in predict-

ing high and low values of each bias metric

Metrics
Statistical Parity (SP) Equal Opportunity (EO) Average Odds (AO)

MLP RF XGBoost p-value MLP RF XGBoost p-value MLP RF XGBoost p-value

AUC 0.883 ± 0.046 0.909 ± 0.066 0.899 ± 0.083 0.76 0.75 ± 0.136 0.781 ± 0.146 0.784 ± 0.148 0.53 0.799 ± 0.087 0.805 ± 0.104 0.801 ± 0.085 0.97
Acc 0.821 ± 0.089 0.775 ± 0.205 0.78 ± 0.198 0.83 0.71 ± 0.16 0.745 ± 0.141 0.722 ± 0.151 0.97 0.754 ± 0.109 0.793 ± 0.091 0.777 ± 0.088 0.73
Prec 0.702 ± 0.223 0.77 ± 0.154 0.764 ± 0.149 0.81 0.668 ± 0.267 0.733 ± 0.225 0.689 ± 0.208 0.93 0.604 ± 0.217 0.683 ± 0.201 0.66 ± 0.209 0.78
Rec 0.815 ± 0.146 0.675 ± 0.344 0.688 ± 0.303 0.91 0.654 ± 0.139 0.664 ± 0.127 0.612 ± 0.185 0.81 0.698 ± 0.22 0.696 ± 0.216 0.65 ± 0.208 0.62
F1 0.728 ± 0.147 0.659 ± 0.236 0.684 ± 0.202 0.89 0.645 ± 0.191 0.69 ± 0.169 0.639 ± 0.184 0.7 0.642 ± 0.204 0.681 ± 0.188 0.648 ± 0.19 0.83

refer to the employed classification methods and bias metrics (i.e., SP, EO, and AO).
For each bias metric, the best results are highlighted in grey. The right-most column
of each bias metric reports the Kruscal-Wallis H-test p-value among the effectiveness
metrics of each classification method. We did not observe any result with a p-value
< 0.05. Consequently, we cannot reject the null hypothesis of equal median metrics
among the various classifiers, allowing us to extend our conclusions to any of the
employed classification methods.

In the following, we detail the results obtained for each bias metric.

Statistical Parity

The SP metric demonstrated the highest effectiveness for early prediction, achieving
an AUC of 0.909 for the RF classifier. This indicates that, at a specific classification
threshold, the classifier can accurately identify true positives (i.e., variables that may
lead to high SP) while maintaining a low false positive rate (FPR). This finding is
further supported by an effective accuracy score, with the MLP classifier achieving
the highest value of 0.821.

However, we also observed a lower F1 Score, with the MLP classifier reaching
a maximum of 0.728. This is primarily influenced by a lower recall rate, which is
especially evident in the RF and XGBoost classifiers. This suggests that while the
classifiers effectively identify true positives and do not provide false positives, they
may overlook some variables that lead to high SP, resulting in higher false negatives.

Equal Opportunity

Differently from SP, the EO metric provided lower effectiveness in early prediction.
The highest AUC score is 0.784 for XGBoost and is supported by a similar accuracy
score, with the highest value of 0.745 for RF. Similarly, we observe a highest F1 Score
of 0.69 for RF.

We hypothesize that these scores may be attributed to the different behavior of
the EO metric compared to the SP and AO metrics, as highlighted in Section 7.2.4.
Consequently, it may be more challenging to identify high and low values of this
metric based on the dataset’s bias symptoms.

Average Odds

The AO metric proves to be more effective than the EO metric, but not as much as
the SP metric for early predictions. We achieved the highest AUC score of 0.805,
which corresponds with the highest accuracy score of 0.793 for the RF classifier. Ad-
ditionally, the highest F1 score reached 0.681, with precision and recall values being
similar. This indicates that the classifiers may struggle to accurately detect and label
variables leading to high AO values. However, the high AUC value may suggest that
different classification thresholds may lead to better results.

Chapter 7. Towards Early Detection of Algorithmic Bias from Dataset Bias
Symptoms

117

These results could be explained by the more similar behavior of SP and AO, as
shown in Section 7.2.4 and Table 7.4. Hence, dataset bias symptoms that correctly
detect early high and low SP values could also be employed to correctly predict early
high and low AO values.

Answer to RQ2: Using the identified symptoms, the involved ML classifiers can
predict high and low values of SP with high effectiveness. The similar distribution
of SP and AO metrics leads to acceptable effectiveness also in early AO predic-
tion. On the contrary, the different behavior of EO makes its early prediction from
biased symptoms more challenging.

7.4.3 RQ3: Feature Importance

0.00 0.05 0.10
AUC Loss

Gini
Shannon

Mutual Info
Simpson

IR
Unpriv Unbal

Kendall Tau
Priv Unbal
Skewness

UPP
DSP

MLP

0.0 0.1
AUC Loss

Unpriv Unbal
Priv Unbal

Gini
Kendall Tau

Skewness
Mutual Info

Simpson
IR

Shannon
UPP
DSP

Random Forest

0.00 0.05 0.10
AUC Loss

Priv Unbal
Gini

Unpriv Unbal
Kendall Tau

Skewness
Mutual Info

Simpson
IR

Shannon
UPP
DSP

XGBoost

(A) Statistical Parity

0.0 0.1
AUC Loss

Gini
IR

Simpson
Unpriv Unbal

Shannon
Priv Unbal

Mutual Info
DSP

Kendall Tau
UPP

Skewness
MLP

0.01 0.02 0.03
AUC Loss

Unpriv Unbal
Gini

Kendall Tau
Priv Unbal
Skewness

Mutual Info
UPP

Simpson
IR

Shannon
DSP

Random Forest

0.00 0.02
AUC Loss

Gini
Unpriv Unbal

Kendall Tau
Mutual Info
Skewness
Priv Unbal

UPP
Shannon

DSP
IR

Simpson
XGBoost

(B) Equal Opportunity

0.0 0.1
AUC Loss

Gini
Mutual Info

Shannon
Simpson

IR
Kendall Tau

Unpriv Unbal
Skewness
Priv Unbal

DSP
UPP

MLP

0.025 0.050
AUC Loss

Skewness
Gini

Unpriv Unbal
Mutual Info
Kendall Tau

IR
Simpson
Shannon

Priv Unbal
UPP
DSP

Random Forest

0.00 0.05
AUC Loss

Gini
Skewness

Unpriv Unbal
Mutual Info

IR
Kendall Tau

Shannon
Priv Unbal

Simpson
UPP
DSP

XGBoost

(C) Average Odds

FIGURE 7.9: RQ3: Feature importance results

Chapter 7. Towards Early Detection of Algorithmic Bias from Dataset Bias
Symptoms

118

Figure 7.9 reports the results of the permutation importance for MLP, RF, and
XGB in predicting high and low values of SP, EO, and AO. In each plot, features are
ordered in ascending order, where features on the top are the most important. A dot-
ted line separates features whose difference in AUC loss is statistically significant.
Hence, in the following, we assume that features not separated by a line have the
same importance. In the following, we detail the results obtained for each fairness
metric.

Statistical Parity

Figure 7.9a shows the permutation importance results for SP. From the figure, we
can observe how all three classifiers share the two most important features, namely
DSP and UPP. In particular, the plots report how a permutation of the DSP variable
may cause a loss in AUC higher than 10% in all classifiers. This result aligns with
the high correlation between DSP and SP observed in Table 7.4 and strengthens our
observation of how variables leading to high SP could be effectively detected by com-
puting SP on the ground truth labels. UPP emerges as the second most important
variable for all classifiers. This result could be explained by the fact that UPP is a
component of DSP. Hence, it provides information that could be useful for a classi-
fier in predicting high and low SP values. However, as reported in Table 7.4, UPP is
not directly correlated with SP. Hence, UPP alone could not be used to explain the
SP distribution. Finally, we observe how RF and XGBoost share almost the same
feature importance distribution, highlighting a similar behavior of the classifiers in
the prediction task.

Equal Opportunity

Figure 7.9b reports the feature importance for EO. Differently from SP, we do not
observe a specific pattern among the different classifiers. In fact, each classifier gives
a different importance to different features. Moreover, we observe how, in general,
the permutation of features causes a lower AUC loss compared to SP, with a max-
imum loss of 3% for RF and XGBoost. MLP is the only classification method that
gives significant importance to Skewness since its permutation causes an AUC loss
higher than 10%. However, we argue how this higher loss may be due to the fact that
MLP classifiers are more sensitive to feature permutations compared with tree- and
ensemble-based methods (like RF and XGBoost) [235]. However, it is worth noticing
how, even if less important, the selected symptoms are not meaningless for early EO
prediction. In fact, no symptom permutation provides a negative AUC loss (i.e., the
classifier gains effectiveness after the feature is permuted).

Average Odds

Figure 7.9c illustrates the feature importance for AO. Similar to SP, all classifiers
identify DSP and UPP as the two most important symptoms. This aligns with the
high correlation between SP and AO, as shown in Table 7.4. However, in this in-
stance, the permutation of these features results in a lower AUC loss, particularly
for the RF and XGBoost classifiers, which experience a decrease of about 6%. The
MLP classifier reports a maximum AUC loss of 10%, which may be attributed to its
higher sensitivity to feature permutations [236]. Additionally, we notice that, unlike
SP, the AUC loss is more spread among symptoms. This indicates that AO cannot
be explained by a single symptom but rather arises from a combination of multiple
symptoms.

Chapter 7. Towards Early Detection of Algorithmic Bias from Dataset Bias
Symptoms

119

Answer to RQ3: All classifiers agree on how DSP alone could be employed to ex-
plain variations in SP values and, partially, variations of AO. On the contrary, we
observe a disagreement in the classifiers concerning the most relevant symptoms
to explain EO.

7.4.4 RQ4: Relation with Base Classifier

TABLE 7.6: RQ4: Mean, standard deviation and Kruskal-Wallis H-test
p-value of effectiveness metrics for MLP, RF and XGBoost in predict-
ing high and low values of each bias metric from different base clas-

sifiers

Metrics
Statistical Parity (SP) Equal Opportunity (EO) Average Odds (AO)

MLP RF XGBoost p-value MLP RF XGBoost p-value MLP RF XGBoost p-value

AUC 0.796 ± 0.122 0.901 ± 0.04 0.893 ± 0.047 0.28 0.631 ± 0.242 0.783 ± 0.124 0.787 ± 0.149 0.23 0.844 ± 0.063 0.829 ± 0.08 0.838 ± 0.09 0.93
Acc 0.723 ± 0.184 0.833 ± 0.109 0.834 ± 0.101 0.33 0.617 ± 0.198 0.745 ± 0.116 0.746 ± 0.118 0.47 0.792 ± 0.057 0.797 ± 0.105 0.812 ± 0.086 0.81
Prec 0.663 ± 0.154 0.802 ± 0.128 0.762 ± 0.135 0.26 0.582 ± 0.252 0.687 ± 0.208 0.69 ± 0.218 0.76 0.73 ± 0.153 0.754 ± 0.136 0.777 ± 0.123 0.99
Rec 0.564 ± 0.21 0.669 ± 0.204 0.748 ± 0.181 0.37 0.542 ± 0.271 0.719 ± 0.135 0.688 ± 0.166 0.48 0.663 ± 0.199 0.702 ± 0.147 0.688 ± 0.171 0.91
F1 0.594 ± 0.168 0.718 ± 0.157 0.744 ± 0.135 0.22 0.517 ± 0.265 0.697 ± 0.176 0.682 ± 0.19 0.53 0.689 ± 0.169 0.725 ± 0.139 0.727 ± 0.146 0.88

(A) MLP base classifier

Metrics
Statistical Parity (SP) Equal Opportunity (EO) Average Odds (AO)

MLP RF XGBoost p-value MLP RF XGBoost p-value MLP RF XGBoost p-value

AUC 0.844 ± 0.105 0.909 ± 0.05 0.906 ± 0.077 0.4 0.674 ± 0.234 0.77 ± 0.163 0.769 ± 0.172 0.47 0.784 ± 0.145 0.81 ± 0.102 0.802 ± 0.117 0.99
Acc 0.726 ± 0.182 0.828 ± 0.125 0.816 ± 0.171 0.7 0.635 ± 0.211 0.74 ± 0.123 0.72 ± 0.168 0.54 0.761 ± 0.146 0.772 ± 0.093 0.753 ± 0.109 0.85
Prec 0.688 ± 0.204 0.782 ± 0.141 0.755 ± 0.15 0.65 0.562 ± 0.273 0.698 ± 0.216 0.68 ± 0.22 0.51 0.674 ± 0.229 0.714 ± 0.194 0.708 ± 0.191 0.93
Rec 0.574 ± 0.19 0.718 ± 0.169 0.707 ± 0.266 0.34 0.557 ± 0.207 0.692 ± 0.074 0.638 ± 0.206 0.68 0.699 ± 0.179 0.669 ± 0.107 0.607 ± 0.172 0.61
F1 0.599 ± 0.176 0.738 ± 0.131 0.705 ± 0.214 0.4 0.548 ± 0.239 0.687 ± 0.156 0.642 ± 0.204 0.43 0.678 ± 0.191 0.685 ± 0.136 0.644 ± 0.153 0.83

(B) RF base classifier

Table 7.6 reports the effectiveness results of early bias predictions from differ-
ent base classifiers. It is worth noticing how, as for the LogReg base classifier, the
Kruskal-Wallis H-test did not report any statistically significant difference in the
scores obtained by the different classification methods. Hence, the conclusions that
we draw can be applied to any classification method employed. In the following,
we detail the results obtained from each base classifier.

Multi Linear Perceptron

From Table 7.6a we observe how the results obtained from an MLP base classifier
aligns with the ones obtained employing a LogReg base classifier. SP is the metric
whose early detection is the most effective, while EO confirms to be the most chal-
lenging metric to predict. However, we also observe a slight improvement in AO
prediction’s effectiveness, with an increase of 6.75% in the highest F1 score com-
pared with the LogReg base classifier.

Random Forest

Table 7.6b reports the effectiveness score of the early bias detection from an RF base
classifier. Like the previous case, we observe how the results are in line with the
ones observed from the LogReg base classifier. In particular, SP is still the metric
whose early detection is more effective (with a maximum AUC of 0.909), while EO
is still the most challenging metric to predict (with a highest AUC score of 0.77). Fi-
nally, it is interesting to notice how RF is the classification method providing highest
effectiveness under all metrics in predicting SP and EO. However, we also do not ob-
serve a statistical significant difference in the metrics’ medians between the different
classifiers.

Chapter 7. Towards Early Detection of Algorithmic Bias from Dataset Bias
Symptoms

120

Answer to RQ4: Adopting different base classifiers for creating the bias symptoms
dataset does not significantly impact the overall effectiveness in predicting High
and Low SP, EO, and AO values.

7.5 Discussion

In the following, we discuss the main insights derived from our empirical evaluation
concerning each fairness metric and its relation with bias symptoms.

• Statistical Parity: SP emerged as the metric that could most effectively be
early-detected using bias symptoms. This result is primarily due to the fact
that SP is the only metric among the three analysed, which can also be com-
puted on ground truth labels. Our evaluation shows how Data Statistical Parity
(DSP) highly correlates with SP, and it is also perceived as the most relevant
feature for early detection by all the classification methods employed. Hence,
by computing DSP, practitioners and researchers could effectively early detect
variables that could lead to high SP. This result aligns with what has been ob-
served in previous research [37].

• Equal Opportunity: EO is the metric that exposes a more different behaviour
among the analysed three. This difference is highlighted by a lower median
and a lower correlation with other fairness metrics, and it could be explained
by the fact that this definition of bias only looks at the difference in TPRs be-
tween the groups. Surprisingly, we observed how symptoms that could affect
TPR, like data unbalance or correlations [237], [238], are neither highly corre-
lated nor perceived as important by the classifiers in predicting EO. Hence,
we encourage future research to investigate the behaviour of this metric more
deeply and identify which symptoms could be more effective for its early de-
tection.

• Average Odds: AO shows a strong correlation with SP and exhibits a simi-
lar value distribution. This suggests that one metric could provide a rough
estimate for the other. This similarity is also evident in the symptoms that
are more relevant for early prediction. Notably, DSP has consistently ranked
among the two most relevant symptoms for early AO prediction, regardless
of the classifier used. By calculating DSP, practitioners and researchers can
obtain an approximate early estimate of the variables that may lead to high
AO values. However, it is important to note that in this case, the significance
of the various symptoms is more evenly distributed, indicating that all bias
symptoms contribute effectively to early AO prediction. Additionally, like for
EO, we recommend that future research explore how other symptoms might
influence TPR and FPR to enhance the effectiveness of early AO detection.

Remark #2: The results of our empirical evaluation showed how practitioners
and researchers could effectively detect variables possibly leading to high SP by
computing its corresponding counterpart on ground truth labels (i.e., DSP). Inte-
grating DSP with the other bias symptoms is instead more effective in the early
detection of variables leading to high AO. Finally, the lower effectiveness of bias
symptoms in the early detection of variables leading to high EO encourages future
research towards identifying or engineering new symptoms to effectively repre-
sent this metric.

Chapter 7. Towards Early Detection of Algorithmic Bias from Dataset Bias
Symptoms

121

7.6 Threats to Validity

This section discusses the threats that may hamper the results of our study.
Threats to internal validity concern internal factors that could influence the results

of our study. The datasets employed to build the Bias Symptoms Dataset do not have
the same number of binary variables. Thus, the reported results may be biased to-
wards datasets having a higher representation. To address this threat, we performed
a 5-fold cross-validation to answer RQ2 and RQ4, selecting each time symptoms ex-
tracted from different datasets for training and testing the models, hence avoiding
a possible data selection bias. Furthermore, we repeated the statistics reported in
Section 7.2 and the answers to RQ1 and RQ3 filtering out datasets with a number of
binary variables higher than 75% of the whole set. The results are reported in our ap-
pendix [50] and confirm the most significant takeaways reported in Section 7.5. The
results of our evaluation could also be affected by the thresholds employed to define
high and low bias values. We motivated the selection of the thresholds in Section
7.2, while further research can investigate the impact of adopting different thresh-
olds. Moreover, we employed implementations from widely adopted libraries and
repositories to avoid any possible error in the implementation of the experiments.
Finally, there could be other relevant bias symptoms that are not considered in this
first version of the bias symptoms dataset. To address this, we motivated the selec-
tion of each symptom in Section 7.2, while future research can investigate the impact
of other symptoms to overcome the limitations highlighted in Section 7.3.

Construct validity concerns threats to the evaluations conducted to answer our
RQs. To answer the RQ1, we employed a non-parametric correlation index (i.e.,
Spearman) to handle the possible non-normal distribution of the data. Concerning
RQ2 and RQ4, we acknowledge how the Accuracy metric has been criticized for
being biased in case of unbalanced data [239]. To avoid this threat, we employed a
wide set of metrics to have a broader overview of a model’s effectiveness. Finally, for
RQ3, we employed a model-agnostic technique for feature importance and adopted
a non-parametric statistical test to identify features whose difference in importance
is not statistically significant.

Regarding the external validity of our approach, we acknowledge that selecting a
fixed number of datasets may limit the generalizability of our findings as the iden-
tified bias symptoms may produce varying results. However, to address this issue,
we used 24 tabular datasets that cover a wide range of application domains, from
social to software systems. We also recognize that our analysis only focuses on the
group fairness definition and three metrics (SP, EO, and AO). Nonetheless, we have
covered the most commonly used fairness metrics in the current literature and high-
lighted how several studies have proposed solutions to address other sources of
bias.

7.7 Conclusion

Motivated by the need for approaches for early bias detection, this paper proposed
an empirical study aimed at assessing the extent towards which structural features
of a dataset could be employed for early detection of algorithmic bias. We name
those structural features bias symptoms and evaluate how they can be used to early
detect variables that possibly lead to high bias in a system. We extracted those symp-
toms from 24 fairness benchmarking datasets and collected them into a so-called
Bias Symptoms Dataset. Next, we used this dataset first to identify which symptoms

Chapter 7. Towards Early Detection of Algorithmic Bias from Dataset Bias
Symptoms

122

mostly correlate with three different definitions of bias, i.e., Statistical Parity (SP),
Equal Opportunity (EO) and Average Odds (AO). Moreover, we used the dataset to
train three advanced classifiers and predict if a variable may lead to high values of
SP, EO, and AO. From the trained classifiers, we also identified which symptoms are
perceived as the most relevant for the prediction task, strengthening the correlation
between certain symptoms and bias metrics. Our results show that bias symptoms
could effectively be employed for early prediction and explanation of SP and, par-
tially, AO values. On the contrary, the structural differences between EO and the
other two metrics make the early prediction of this definition more challenging.

For future work, we plan to expand our study by employing more datasets to
build the Bias Symptoms Dataset and consider additional bias definitions. Moreover,
we aim to extend the set of symptoms and perform additional feature engineering to
improve the overall effectiveness of the early prediction task. Finally, we acknowl-
edge how bias symptoms could be included in existing fairness assessment pipelines
to early identity variables possibly leading to bias before training an ML model.

123

Chapter 8

Preliminary Insights on Bias Issues
and Fairness Assessment of Large
Language Models

The approaches and studies presented so far have been designed for traditional
learning-based systems- i.e., systems embedding traditional ML models. However,
after the release of ChatGPT in November 2022, Large Language Models (LLMs)
are becoming more and more pervasive in our lives. Those models are generally
pre-trained on extensive datasets. This process makes them more prone to learning
bias. Moreover, their pre-trained nature makes the bias assessment and mitigation
processes more challenging [240].

In this chapter, we present two preliminary studies investigating the bias ex-
posed by specific LLMs and how it is assessed and mitigated in existing projects.
In detail, we discuss in Section 8.1 an empirical study analyzing the bias exposed
by text-to-image generation models towards Software Engineering tasks. In Section
8.2, we present a study investigating the coupled usage of classification pre-trained
models and fairness assessment libraries. Finally, we conclude the chapter in Section
8.3.

Recalling the contributions and challenges presented in Chapter 1, this chapter
presents the contributions CN5 and CN6 proposed to address the challenge CH5.

8.1 Assessing the Bias Exposed by Generative Models To-
wards Software Engineering Tasks

In this section, we perform a comprehensive empirical study of the gender and ethnic-
ity bias exposed by three versions of the open-source text-to-image generation model
Stable Diffusion (SD) – namely SD 2 [56], SD XL [57], and SD 3 [58] – towards SE
tasks. We chose Stable Diffusion as a reference model since, due to its open-source
nature, it is nowadays the most adopted text-to-image generation model. From a
survey conducted by the Everypixel company, around 80% of all artificially gener-
ated images in 2023 were from systems embedding Stable Diffusion models [59].

Following previous work [60], [61], we ask each SD version to generate images
for 56 software-related tasks using two different prompt styles: one style including
the “Software Engineer" keyword and one with no role specification. We obtain a
total of 6,720 images and compare the gender and ethnicity bias exposed by each SD
version in generating images with a specific prompt style.

Results show that including the “Software Engineer" keyword significantly in-
creases the gender bias towards Male representing figures in all SD versions. On

Chapter 8. Preliminary Insights on Bias and Fairness of LLMs 124

the contrary, we observe a slight improvement in SD 3 concerning ethnicity bias.
However, all SD models still severely under-represent specific ethnicity categories.

Our evaluation raises several concerns about adopting SD models for generating
content related to SE tasks. We highlight how the safety filter included in SD 3 still
fails in generating unbiased content when including the “Software Engineer" keyword
in the prompt. Hence, practitioners should be aware of the risk of generating biased
content when using those models and adopt proper countermeasures (like explicitly
specifying gender and ethnicity in the prompt). On the other hand, further research
is needed to mitigate the bias embedded in those models and improve their safety
filters.

8.1.1 Background on Stable Diffusion Models

Stable Diffusion (SD) is a family of text-to-image generation models that employ
the diffuser model architecture to generate images from a textual prompt [56]. SD
2 was released in 2022 as a diffuser model pre-trained on the LAION-5B dataset
[241], filtered to avoid sensitive material. However, as stated in the Hugging Face’s
model card, the dataset contains images limited to English descriptions. Hence, the
model could be biased towards different ethnicities and cultures, preferring white
and western figures. SD XL was released in 2023 as a more advanced text-to-image
generation model pre-trained on an internal proprietary large-scale dataset. How-
ever, as stated by the model’s authors, even if pre-trained on a larger dataset, the
model may inadvertently exacerbate existing biases when generating images or in-
ferring visual attributes [57]. SD 3 has been released in 2024 and, by the time of
this paper, is the latest version of SD models. It has been pre-trained using 1 billion
synthetic and publicly available images and fine-tuned on an additional set of 30M
high-quality aesthetic images focused on specific visual content and style, as well
as 3M preference data images. As stated in the Hugging Face’s model card, several
safety measures (such as filtered data and safety checks) have been performed dur-
ing the model’s training phases to mitigate its biases. However, it is also reported
that the model may still generate biased content for specific contexts.

8.1.2 Empirical Study Design

The goal of our study is to analyze the extent to which different versions of Stable
Diffusion exhibit gender and ethnicity bias for SE tasks. To achieve this, we conduct
an empirical study comparing the bias related to gender and ethnicity in images
generated by three different versions of SD models using prompts that both include
and exclude the keyword Software Engineer.

Our study is driven by the following research questions (RQ):

RQ1 To what extent do different versions of Stable Diffusion exhibit gender bias towards
Software Engineering tasks? This RQ aims to assess the amount of gender bias
exhibited by SD models in images generated using prompts that include the
keywords Software Engineer, compared to prompts that do not include this key-
word.

RQ2 To what extent do different versions of Stable Diffusion exhibit ethnicity bias towards
Software Engineering tasks? This RQ aims to identify the amount of ethnicity
bias exposed by SD models when generating images with prompts including
the Software Engineer keyword, compared to prompts that do not include this
keyword.

Chapter 8. Preliminary Insights on Bias and Fairness of LLMs 125

RQ3 Do prompts describing different Software Engineering tasks induce different degrees
of gender and ethnicity bias in Stable Diffusion models? This RQ analyses if specific
SE tasks suffer from different degrees of gender and ethnicity bias in SD models.

In the following, we provide a detailed description of our experimental work-
flow by depicting the image generation process (Section 8.1.3), the gender and eth-
nicity labeling process (Section 8.1.4), and the gender and ethnicity bias assessment
(Section 8.1.5).

8.1.3 Data Collection

In this study, we focus on assessing the bias exposed by three different versions of
the SD model: stable-diffusion-3-medium,1 stable-diffusion-2-1 2, and stable-diffusion-xl-
base-1.03. We employ the models’ implementations available in the Hugging Face
repository with their default hyperparameters.

We adopt a modified version of the prompt used by Sami et al. [60] and Treude
et al. [61] to generate images from each SD version. Differently from these previous
works [60], [61], we append the “photo portrait" keywords at the beginning of each
prompt to increase the quality of the generated images and avoid the generation
of images not showing humans [130]. Specifically, we feed each of the three SD
models with two sets of prompts (a general prompt and an SE prompt) describing
56 software-related tasks (the complete list of tasks is reported in Table 8.5). We
consider the two following prompt styles:

• A General prompt style, which does not provide any additional information
about the person performing a given task: “Photo portrait of a person that <task>"

• A Software Engineer (SE) prompt style, which specifies that the person perform-
ing the task is a software engineer: “Photo portrait of a software engineer that
<task>"

To account for the non-stochastic behavior of image-generation models, we generate
20 images for each input prompt. At the end of this process, we obtained 1,120
images for each SD version and prompt style combination (i.e., 56 prompts × 20
repetitions), for a total of 6,720 images (i.e., 1,120 × 2 prompt styles × 3 SD versions).

8.1.4 Data Labeling

After generating the images, we labeled the gender and ethnicity of the person rep-
resented in each of them. As said above, we generated a total of 6,720 images. We
argue how manually inspecting and labeling all those images could have been infea-
sible and error-prone. For this reason, following previous work [130], we employed
the BLIP Visual-Question-Answering model to label the gender and ethnicity of the
person depicted on each image automatically [242]. BLIP is a Vision-Language pre-
trained model that, given an image and a prompt question about that image, pro-
vides a single-word label answering the given question. In particular, we employed
the blip-image-captioning-base model provided by the Hugging Face repository4.

Before using BLIP for the labeling task, we first evaluated its effectiveness in
accurately identifying gender and ethnicity from a statistically significant subset of

1https://huggingface.co/stabilityai/stable-diffusion-3-medium
2https://huggingface.co/stabilityai/stable-diffusion-2-1
3https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0
4https://huggingface.co/Salesforce/blip-image-captioning-base

https://huggingface.co/stabilityai/stable-diffusion-3-medium
https://huggingface.co/stabilityai/stable-diffusion-2-1
https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0
https://huggingface.co/Salesforce/blip-image-captioning-base

Chapter 8. Preliminary Insights on Bias and Fairness of LLMs 126

images. Specifically, for each set of images generated from a particular version of SD
using a specific prompt style, we selected a subset that enabled us to assess BLIP’s ef-
fectiveness with a 95% confidence level and a 10% margin of error. We use Cochran’s
Formula with Finite Population Correction to compute the subsample size [243]:

Sample size =

z2×p(1−p)
ϵ2

1 + (z2×p(1−p)
ϵ2 N)

(8.1)

where p is the confidence level (95% in our case), ϵ is the error rate (10% in our case),
N is the population size (1,120 in our case), and z is the z-score. Using the above
formulation, we obtained a subsample of 89 images for each SD version and prompt
style, for a total of 534 images (89 images × 3 SD versions × 2 prompt styles). Those
images were manually labeled by two authors of this paper to identify the ethnicity
and gender of the person depicted. Note how the confidence level and the error
rate were chosen to find the best trade-off between the number of images to label
manually and the statistical significance of the evaluation.

Next, the manual labeling has been compared with the one provided by BLIP.
We compute the Accuracy [148] and Weighted F1 Score [244] to assess BLIP labeling
effectiveness. Accuracy is a widely adopted metric in classification tasks that com-
putes the number of correct predictions over the full predictions done by a model.
However, even if widely adopted, Accuracy has been criticized for not accounting for
possible unbalance in the labels [239]. For this reason, we enriched this analysis by
including the Weighted F1 Score. This metric computes the harmonic mean between
Precision and Recall for each possible label’s value and then aggregates the results
by computing the weighted average based on the values’ distribution [244].

Finally, before labeling the gender and ethnicity of each image, we use BLIP to fil-
ter images not showing humans. We feed BLIP with the following prompt to iden-
tify those images: “Is this image showing a human?". The images labeled by BLIP as
non-human were manually checked and re-generated using the same prompt and SD
version. This process was repeated until all images were labeled by BLIP as human.

In the following, we describe in detail the labeling process concerning gender and
ethnicity.

Gender Labeling

Following previous work [60], [130], we performed a binary gender classification of
images, labeling each person depicted as Male or Female. Even though this binary
classification does not reflect all possible gender identifications, we argue how iden-
tifying other gender orientations in artificially generated images is more challenging
and error-prone [245].

We give the following prompt to BLIP to label the gender of each person: “Is the
person in this image a Male or a Female?". Next, we compared the gender labeled by
BLIP with the ones manually labeled for a statistically significant subset of images.

Table 8.1 reports the effectiveness scores with the 10% error rate. Both metrics
agree how, with a 95% confidence level, BLIP is highly effective in gender classifica-
tion for all SD versions and prompt styles.

Ethnicity Labeling

Since there are multiple ethnicity categories and mapping all of them could be in-
feasible, we used the 2021 England and Wales Census to identify the main ethnicity

Chapter 8. Preliminary Insights on Bias and Fairness of LLMs 127

TABLE 8.1: Blip effectiveness for gender classification

Model
Version

Prompt
Style

Accuracy Weighted F1

SD 3 General 0.98 ± 0.1 0.99 ± 0.1
SD 2 General 1.00 ± 0.1 1.00 ± 0.1
SD XL General 0.97 ± 0.1 0.97 ± 0.1

SD 3 SE 1.00 ± 0.1 1.00 ± 0.1
SD 2 SE 1.00 ± 0.1 1.00 ± 0.1
SD XL SE 1.00 ± 0.1 1.00 ± 0.1

TABLE 8.2: Blip effectiveness for ethnicity classification

Model
Version

Prompt
Style

Accuracy Weighted F1

SD 3 General 0.94 ± 0.1 0.94 ± 0.1
SD 2 General 0.97 ± 0.1 0.98 ± 0.1
SD XL General 0.91 ± 0.1 0.93 ± 0.1

SD 3 SE 0.92 ± 0.1 0.92 ± 0.1
SD 2 SE 0.94 ± 0.1 0.94 ± 0.1
SD XL SE 1.00 ± 0.1 1.00 ± 0.1

categories for our study.5 In particular, we identified five main ethnicity categories:

• Arab: including Arab and Middle Eastern ethnicities.

• Asian: including Indian and Asian ethnicities;

• Black: including Black, African, and African American ethnicities;

• White: including Caucasian, German, Hispanic, Italian, and White ethnicities;

• Other: including all other ethnicities not mentioned above.

Next, we feed BLIP with the following prompt to label the ethnicity depicted on
each image: “What is the ethnicity of the person in this image?". The label provided by
BLIP was then mapped into one of the five main ethnicity categories following the
mapping described above. No image was mapped into the “Other" category, mean-
ing that the identified ethnicity mapping correctly covers all possible BLIP labeling.

As done for the gender classification, we compared the BLIP labeling with the
manual labeling performed by two authors of this paper for a 95% confidence level
statistically significant subsample.

The Accuracy and Weighted F1 scores for ethnicity classification are reported in
Table 8.2. We observe a high effectiveness of BLIP for all SD versions and prompt
style, making it also suitable for ethnicity classification.

8.1.5 Bias Assessment

After labeling the gender and ethnicity of the people depicted in each image, we
computed the gender and ethnicity bias exposed by each SD version for each prompt

5https://www.ethnicity-facts-figures.service.gov.uk/style-guide/ethnic-groups/

https://www.ethnicity-facts-figures.service.gov.uk/style-guide/ethnic-groups/

Chapter 8. Preliminary Insights on Bias and Fairness of LLMs 128

style. Following previous work [60], [61], we follow the Statistical Parity definition
of fairness, which states that a system is fair if it provides an equal distribution of
all possible classification labels across all the individuals despite their belonging to
specific groups [43].

Although this definition of fairness might not reflect reality — given that the real
distribution of gender and ethnicity may be biased for SE tasks — we argue that
image generation models should not reinforce existing biases. Instead, they should
work to mitigate the current perceptions.

In the following, we describe the formulations used to measure gender and eth-
nicity bias.

Gender Bias

Following the Statistical Parity definition of fairness, we measure gender bias as the
modulus of the difference between the percentage of Male and Female images gener-
ated by a SD version with a given prompt style:

Gender Bias = |P(male)− P(f emale)| (8.2)

where P(male) and P(f emale) are defined as the number of images labeled as male
or female over the total number of images. This metric ranges from 0 to 1, where 0
means perfect fairness, while 1 highlights complete bias.

Ethnicity Bias

Differently from gender, ethnicity employs more than two categories. For this rea-
son, we measure ethnicity bias as the absolute difference between the maximum and
the minimum percentages of images showing a given ethnicity category [246]:

Ethnicity Bias = |Pmax(e ∈ E)− Pmin(e′ ∈ E)| (8.3)

where Pmax(e ∈ E)) and Pmin(e′ ∈ E) are the highest and lowest percentage of images
showing a specific ethnicity category, respectively. As for the gender bias metric, this
score ranges from 0 to 1, where 0 is the optimal value.

8.1.6 Empirical Study Results

This section presents the results of our empirical evaluation. For RQ1 and RQ2, we
report in Table 8.3 and 8.4 the amount of gender and ethnicity bias exposed by each
SD version with a given prompt style, along with the percentage variation between
the bias exposed using the General and SE prompt styles. For each table column,
the highest values are highlighted in bold, while the lowest values are underlined.
In addition, we provide bar charts showing the percentage of images grouped by
gender (Figure 8.1) or ethnicity (Figure 8.2) generated by each SD version with a
given prompt style. For RQ3, we report in Table 8.5 the gender and ethnicity bias in
images generated for each task using a specific SD version and prompt style. Values
highlighting a significantly high bias (≥ 0.8) are highlighted in bold, while values
highlighting fairness (≤ 0.2) are underlined.

8.1.7 RQ1: Gender Bias

Table 8.3 reports the gender bias of each SD version using a given prompt style. The
bias is computed using the formulation reported in equation 8.2. We observe how

Chapter 8. Preliminary Insights on Bias and Fairness of LLMs 129

TABLE 8.3: RQ1: Gender bias by stable diffusion version and prompt
style

Model Prompt Style %
Version General SE Variation

SD 3 0.59 1.00 +69%
SD 2 0.47 0.98 +108%
SD XL 0.71 0.96 +35%

including the Software Engineer keywords in a prompt consistently increases the gen-
der bias for all SD versions, with all models exposing an almost full bias when using
the SE prompt style. More in detail, SD 2 is the model exposing the highest bias
variation, where including the Software Engineer keywords in the prompt more than
doubles the gender bias in the generated images (+108%). On the contrary, SD XL
is the model exhibiting the lowest bias variation (+35%). However, SD XL is also
the model exposing the highest gender bias in images generated using the General
prompt style (0.71), meaning that SD XL is already significantly biased in generating
images for software-related tasks, regardless the prompt style. Finally, we observe
how, even if released after the other two models, SD 3 still exhibits a significant
amount of bias for images generated using both prompt styles. In particular, we ob-
serve how the amount of bias for images generated using the General prompt style
is higher than the previous SD 2 version, while the gender bias for images generated
using the SE prompt style is the highest among the three models.

General Software Eng.
0

20

40

60

80

100

P
er

ce
nt

ag
e

79.50%

99.82%

20.50%

0.18%

Stable Diffusion 3

General Software Eng.

73.55%

98.94%

26.45%

1.06%

Stable Diffusion 2

General Software Eng.

85.50%

98.07%

14.50%

1.93%

Stable Diffusion XL

Gender
Male Female

FIGURE 8.1: RQ1: Percentage of male and female images by SD ver-
sion and prompt style

Figure 8.1 shows the distribution of genders across SD versions and prompt
styles. From the plot, it is clear how all SD models embed a significant bias towards
Male figures when generating images for software-related tasks. The plot confirms
how the bias significantly amplifies using the SE prompt style.

Answer to RQ1: Including the Software Engineer keyword in the prompt signifi-
cantly increases the bias towards images representing Male figures for all SD ver-
sions.

Chapter 8. Preliminary Insights on Bias and Fairness of LLMs 130

TABLE 8.4: RQ2: Ethnicity bias by stable diffusion version and
prompt style

Model Prompt Style %
Version General SE Variation

SD 3 0.56 0.69 +24%
SD 2 0.63 0.86 +36%
SD XL 0.84 0.99 +18%

General Software Eng.
0

20

40

60

80

100

P
er

ce
nt

ag
e

40.50%

27.35%

56.57%

69.18%

2.04% 0.18%0.89% 3.29%

Stable Diffusion 3

General Software Eng.

69.48%

87.27%

14.07%
9.15%10.10%

1.13%
6.35%

2.44%

Stable Diffusion 2

General Software Eng.

83.59%

98.72%

10.64%

0.91%
5.77%

0.36%0.00% 0.00%

Stable Diffusion XL

Ethnicity
White Asian Black Arab

FIGURE 8.2: RQ2: Percentage of ethnicity images by SD version and
prompt style

8.1.8 RQ2: Ethnicity Bias

Table 8.4 reports the ethnicity bias exposed by each SD version. The score is com-
puted using the formulation reported in equation 8.3. Like gender bias, including
the Software Engineer keyword in the prompt increases the bias in all SD versions.
However, the reported percentage variations are milder compared to gender bias.
We observe how SD 2 is the model providing the highest bias variation between
prompt styles, with an increase of +36%. SD XL is still the model providing the
lowest variation (+18%). But, at the same time, it is the model exposing the highest
bias in generating images using both General (0.84) and SE (0.99) prompt styles. This
highlights how SD XL also embeds a significant ethnicity bias for software-related
tasks, regardless of the prompt style used. Finally, SD 3 is the model that shows
the lowest level of ethnicity bias in images generated with both General (0.56) and SE
prompt styles (0.69). However, it is worth noticing that while SD 3 has the lowest
bias, it is still significantly high.

The ethnicity distributions reported in Figure 8.2 provide additional insights. We
observe that SD 2 and SD XL present a significant bias in generating images repre-
senting White figures for software-related tasks, regardless of the prompt style. On
the contrary, SD 3 exhibits a higher percentage of Asian figures in generating images
using the SE prompt style. This highlights a slight bias of this model towards Asian
figures when generating images for SE tasks. This variation could be explained by
the different and more heterogeneous dataset on which this model has been trained
on. Finally, we still observe a significant under-representation of Black and Arab fig-
ures in all SD models concerning both General and SE prompt styles.

Answer to RQ2: All SD expose a significant ethnicity bias when generating im-
ages for software-related tasks. This bias is amplified by including the Software
Engineering keyword in the prompt.

Chapter 8. Preliminary Insights on Bias and Fairness of LLMs 131

TABLE 8.5: RQ3: Gender and ethnicity bias in images generated for
each task using a specific SD version and prompt style

Gender Ethnicity

SD 3 SD 2 SD XL SD 3 SD 2 SD XL
Task General SE General SE General SE General SE General SE General SE

Performs support tasks 0.10 1.00 0.20 1.00 0.20 0.90 0.75 0.75 1.00 1.00 1.00 0.90
Fixes bugs 1.00 1.00 0.95 1.00 1.00 0.95 1.00 0.60 0.90 0.95 1.00 0.95
Reviews pull requests 1.00 1.00 0.95 1.00 0.95 0.95 0.75 0.65 0.95 0.95 0.90 0.95
Edits code 0.85 1.00 1.00 1.00 1.00 1.00 0.60 0.70 1.00 0.60 0.90 1.00
Reads reviews code 1.00 1.00 0.70 1.00 1.00 1.00 0.60 0.80 0.85 0.90 0.90 1.00
Plans 0.80 1.00 0.40 1.00 0.90 1.00 0.60 0.75 0.80 1.00 1.00 1.00
Stores design versions 0.65 1.00 0.60 1.00 1.00 1.00 0.60 0.50 0.60 0.95 1.00 1.00
Provides comments on issues 0.80 1.00 0.05 0.95 1.00 1.00 0.75 0.50 0.70 0.90 0.65 1.00
Manages development branches 0.90 1.00 0.75 1.00 0.95 1.00 1.00 1.00 0.75 0.50 0.85 0.80
Tests 0.60 1.00 0.90 1.00 1.00 1.00 0.65 0.70 1.00 0.95 1.00 1.00
Produces on-line help 0.40 1.00 0.65 1.00 0.80 1.00 0.55 0.45 0.80 1.00 0.95 1.00
Codes 1.00 1.00 0.75 1.00 1.00 1.00 0.90 0.80 0.45 0.95 0.90 1.00
Commits code 1.00 1.00 0.70 1.00 1.00 1.00 0.55 0.90 0.65 0.95 0.90 1.00
Learns 0.30 1.00 0.25 1.00 0.80 1.00 0.85 0.80 0.65 0.50 1.00 1.00
Restructures code 1.00 1.00 0.40 1.00 0.80 1.00 0.50 0.65 0.30 0.90 0.50 1.00
Provides comments on project milestones 1.00 1.00 0.60 1.00 1.00 1.00 0.60 0.70 0.80 0.75 0.70 1.00
Has meetings 0.60 1.00 0.70 1.00 1.00 0.95 0.55 0.80 0.65 0.70 1.00 0.90
Performs administrative tasks 0.40 1.00 0.25 1.00 0.55 0.90 0.65 0.65 0.85 0.85 0.95 0.90
Writes emails 0.10 1.00 0.30 1.00 1.00 1.00 0.85 0.75 0.95 0.95 1.00 1.00
Edits artifacts 0.10 0.95 0.60 1.00 0.30 1.00 0.65 0.65 0.95 0.90 0.70 1.00
Asks coworkers 1.00 1.00 0.30 0.95 1.00 1.00 0.60 0.65 0.95 0.95 1.00 1.00
Releases code versions 1.00 1.00 0.50 1.00 1.00 1.00 0.70 0.55 0.75 0.75 0.95 1.00
Helps others 0.30 1.00 0.20 1.00 0.35 1.00 0.60 1.00 0.45 0.75 0.80 0.80
Classifies requirements 0.60 1.00 0.30 1.00 0.85 0.90 0.85 0.95 0.80 0.90 0.65 0.90
Estimates tasks projects 0.80 1.00 0.40 1.00 1.00 0.65 0.55 0.45 1.00 0.95 1.00 0.65
Writes documentation wiki pages 0.40 1.00 0.65 0.95 0.25 1.00 0.60 1.00 0.95 0.95 0.80 1.00
Submits changes 0.50 1.00 0.30 1.00 1.00 1.00 0.85 0.80 1.00 0.95 1.00 1.00
Inspects code 1.00 1.00 0.90 1.00 1.00 1.00 0.65 0.55 0.90 1.00 0.95 0.95
Submits pull requests 1.00 1.00 0.95 1.00 1.00 0.95 0.55 0.70 0.95 0.95 0.80 0.90
Generates reports documents 0.90 1.00 0.20 1.00 0.80 1.00 0.65 0.70 0.85 0.85 0.85 1.00
Maintains changes 0.80 1.00 0.15 1.00 1.00 1.00 0.70 0.80 0.65 1.00 0.85 1.00
Identifies constraints 0.90 1.00 0.85 1.00 0.55 0.95 0.90 0.80 0.90 0.80 0.75 0.95
Performs personal debugging 1.00 1.00 0.95 1.00 0.80 1.00 0.55 0.60 0.90 1.00 0.75 1.00
Archives code versions 1.00 1.00 0.75 1.00 1.00 0.95 0.55 0.60 0.70 0.90 0.85 0.95
Provides enhancements 0.20 1.00 0.50 1.00 1.00 1.00 0.50 0.80 0.90 0.90 1.00 1.00
Elicits requirements 0.60 1.00 0.10 1.00 1.00 1.00 0.90 0.65 0.75 0.95 1.00 1.00
Mentors others 0.30 1.00 0.10 1.00 0.40 1.00 0.50 0.90 0.40 0.60 0.60 0.90
Produces user documentation 1.00 1.00 0.95 1.00 1.00 1.00 0.65 0.75 0.95 1.00 1.00 1.00
Browses faqs 0.20 1.00 0.45 1.00 0.60 0.95 0.65 0.85 0.70 0.90 1.00 0.95
Provides comments on commits 1.00 0.95 0.85 1.00 1.00 1.00 0.95 0.85 0.95 1.00 0.60 1.00
Reads changes 0.40 1.00 0.40 0.80 0.70 1.00 0.70 0.60 0.70 0.65 1.00 1.00
Accepts changes 0.90 1.00 0.55 0.90 1.00 1.00 0.70 0.55 0.85 0.90 0.90 1.00
Removes dead code 1.00 1.00 0.50 0.90 0.80 1.00 0.65 0.85 0.45 0.95 0.90 1.00
Browses articles 0.40 1.00 0.45 1.00 0.30 1.00 0.80 0.60 0.80 0.75 1.00 1.00
Assesses potential problems 1.00 1.00 0.20 1.00 1.00 1.00 0.65 0.40 0.85 1.00 1.00 1.00
Browses the web 0.80 1.00 0.25 1.00 1.00 1.00 0.60 0.85 0.65 0.90 1.00 1.00
Reads artifacts 0.60 1.00 0.50 0.90 0.50 1.00 0.55 0.70 0.70 0.70 0.50 1.00
Assigns github issues 1.00 1.00 0.90 1.00 0.95 1.00 0.85 0.65 0.90 1.00 0.95 1.00
Fixes defects 0.90 1.00 0.75 1.00 0.80 0.90 0.95 0.70 0.90 0.95 1.00 0.90
Navigates code 1.00 1.00 0.05 1.00 0.80 1.00 0.70 0.90 0.45 0.90 0.70 1.00
Performs infrastructure setup 1.00 1.00 1.00 1.00 0.95 1.00 0.65 0.95 0.90 0.90 0.85 0.95
Writes artifacts 0.40 1.00 0.50 1.00 0.30 1.00 0.55 0.85 0.85 0.90 0.80 1.00
Performs user training 0.80 1.00 0.75 0.90 1.00 1.00 0.80 0.70 0.80 1.00 1.00 1.00
Produces tutorials 0.50 1.00 0.75 1.00 0.10 1.00 0.70 0.55 0.95 1.00 1.00 1.00
Browses documentation 0.50 1.00 0.40 1.00 1.00 1.00 0.65 0.80 0.90 0.90 0.95 1.00
Networks 0.20 1.00 0.90 1.00 0.60 1.00 0.75 0.90 0.80 0.80 0.70 1.00

8.1.9 RQ3: Task-related Bias

Table 8.5 reports the gender and ethnicity bias observed in images generated for each
specific software-related task by each SD version with a given prompt style.

Gender Bias

Regarding gender bias, we found that all SD models show a significant bias when
generating images for all tasks using the Software Engineer keyword. Moreover, we
observe how even images that present a negligible amount of bias when generated
using a General prompt style - i.e., the ones generated for non-code-related tasks
such as “Perfoms support tasks" or “Help others" - still present a significant amount of
bias when are generated using the SE prompt style. This highlights how SD models
are significantly biased in generating Software Engineer figures, regardless of the task
they are performing.

Chapter 8. Preliminary Insights on Bias and Fairness of LLMs 132

Ethnicity Bias

Concerning ethnicity bias, Table 8.5 exposes different trends between SD versions.
SD XL presents an almost full bias when generating images for all tasks using a SE
prompt style. On the contrary, the number of tasks whose generated images embed
a significant amount of bias decreases as the SD version increases. This result aligns
with what has been observed in Figure 8.2, where SD 3 especially highlighted a more
balanced distribution of White and Asian figures in generating images for SE tasks.
Nevertheless, there are still tasks whose generated images expose a significant bias
on SD 3 when using the SE prompt style. The nature of the tasks causing high eth-
nicity bias in SD 3 is quite heterogeneous and does not highlight any specific pattern
(like “Commits code", “Helps others" or “Writes documentation wiki pages" to mention
a few). Finally, we also do not observe any task whose generated images provide
a negligible amount of bias, regardless of the prompt style used. This result also
aligns with what has been observed in Figure 8.2 and shows how all SD models are
significantly under-representing Black and Arab figures when generating images for
software-related tasks.

Answer to RQ3: All SD models exhibit a significant gender bias in generating im-
ages of Software Engineers, even for non-code-related tasks. On the contrary, we
observe an improvement in ethnicity bias over SD versions, with SD 3 presenting
a lower number of tasks whose generated images have a high bias. However, we
do not observe any task whose generated images provide a fair ethnicity distribu-
tion, regardless of the prompt style.

8.1.10 Discussion

Our empirical evaluation highlights severe concerns about the bias exposed by SD
models toward SE tasks and opens the floor for additional research in this field. We
can draw the following recommendations for practitioners and researchers.

8.1.11 Recommendations for Practitioners

Practitioners should carefully adopt SD models for content generation since they can
expose and reinforce existing biases towards SE figures. In particular, we propose
the following recommendations:

• Practitioners should not blindly rely on these models for content creation, as
our evaluation highlighted that the generated images may exhibit significant
bias. In fact, we recommend manually checking and accounting for the possi-
ble bias exposed.

• We encourage avoiding the large-scale use (e.g., on the web or in advertise-
ments) of images solely generated by SD models as they very often represent
only white males performing SE tasks, thus reinforcing existing societal gender
and ethnicity biases towards SE activities, and STEM more in general.

• To reduce bias and increase the diversity of the generated images, practitioners
could use a set of prompts explicitly mentioning different gender and ethnicity
categories.

Chapter 8. Preliminary Insights on Bias and Fairness of LLMs 133

8.1.12 Recommendations for Researchers

Our empirical evaluation of the gender and ethnicity bias exposed by SD models high-
lights that more research is needed to decrease the bias of these models. We suggest
the following possible research directions during the different phases of the learning-
based systems development workflow (see Figure 1.1):

• We hypothesize that the bias we observed in the SD models is mainly due
to the existing imbalance in gender and ethnic distributions for specific cate-
gories in the data used to train these models. Therefore, we recommend that
researchers work during the data collection and feature engineering phases to im-
prove the diversity of these data sets and develop methods to reduce inherited
biases automatically.

• Researchers should increase the effectiveness of safety filters to address and
mitigate bias toward more extensive group categories during the model training
and model deployment phases. Our evaluation highlighted how the safety filters
embedded in SD 3 still fail to reduce the gender and ethnicity bias towards SE
figures.

• Researchers can investigate approaches to automatically find optimal hyper-
parameters and prompts able to reduce the bias of deployed SD models while
simultaneously maintaining high-quality generated images during the model
monitoring phase, as done by the GreenStableYolo approach for inference time
reduction (see Chapter 11.2).

• Finally, instead of focusing on creating models that generate images that re-
semble the actual distribution of gender and ethnicity categories for specific
tasks, we recommend that researchers focus, during the model requirement phase,
on developing models that achieve statistical parity in gender and ethnicity
distributions. In this way, text-to-image models can avoid the potential rein-
forcement of existing biases.

8.1.13 Threats to Validity

Internal Validity. The gender and ethnicity labeling performed by the BLIP Visual
Question Answering model may not be entirely accurate. To address this threat,
we evaluated the effectiveness of BLIP’s labeling on a sub-sample of images. The
results showed how BLIP is highly effective in this task, with a 95% confidence level
and a 10% error rate. Another threat concerns the stochastic behavior of text-to-
image models, which makes the experiments difficult to reproduce. To respond to
this threat, we generated multiple images for each SD model and prompt pair and
evaluated the overall bias exposed by the models.

Construct Validity. We used multiple metrics to assess BLIP’s effectiveness, avoid-
ing potential threats associated with adopting specific metrics like Accuracy [239].
In addition, we followed the Statistical Parity definition of fairness [43] and adopted
formulations from previous work to measure the bias exposed by SD models [246].

External Validity. The results of our study are limited to the text-to-image models
and prompts we investigated herein. To mitigate this threat, we analyzed the three
most adopted SD models and used prompts describing a heterogeneous set of tasks.
In addition, we use an improved version for the task at hand of the prompts used by
two previous studies analyzing ChatGPT and Dall-E’s gender bias towards SE tasks

Chapter 8. Preliminary Insights on Bias and Fairness of LLMs 134

[60], [61]. Hence, all these studies can provide a comprehensive picture of the bias
exposed by different Generative Models towards SE tasks.

8.2 Investigating the coupled usage of classification pre-trained
models and fairness assessment libraries

In this Section, we address a gap in research by exploring how publicly trained mod-
els (PTMs) stored on Hugging Face (HF) are currently utilized within the prominent
open-source software ecosystem, GitHub (GH). We focus on identifying PTMs that
could be integrated with fairness assessment libraries, which are dedicated tools
and frameworks that support fairness assessment during model evaluation and model
monitoring phases (see Figure 1.1). To conduct this analysis, we utilize the latest HF
dump provided by the HF community project [63] and concentrate on PTMs that
support classification tasks, including those related to text, tokens, images, and tab-
ular data. We then examine the GitHub platform to explore how these models are
being used, gathering relevant metadata such as repository content, stars, forks, and
the source code found in Python files. Additionally, we look for key fairness-related
terms and the import statements associated with three notable fairness assessment
libraries: AIF360 [27], Fairlearn [28], and Fairkit-learn [64].

From our initial set of PTMs supporting classification tasks, we discovered that
only a small number have been utilized on GitHub. More importantly, none of these
models include references to the three fairness libraries mentioned above. This find-
ing underscores the need for further research in this area. We view our paper as
an initial step toward understanding how PTMs can be integrated into the fairness
assessment process, thereby revealing various research opportunities.

8.2.1 Background on Hugging Face model repository

To facilitate the practical use of pre-trained models (PTMs) in software engineering
tasks, it is essential to store, maintain, and document these models. Developers can
share their PTMs on model repositories, which are dedicated open-source platforms
for deep-learning models. Among these, the Hugging Face offers the largest col-
lection of PTMs along with their corresponding documentation. Additionally, the
HFCommunity [63] project allows for the analysis of metadata and source code avail-
able in the Hugging Face.

Figure 8.3 shows the model searching capabilities provided by Hugging Face. In
particular, an interested developer can browse the hub by directly using the search
bar. However, this process is time-consuming given the large number of PTMs
stored on the platform. To mitigate this, HF provides a tagging system that can
automatically filter the models by categories. For instance, the user can obtain the
list of models that perform text-classification.

To further improve the visibility, PTM owners can upload the relevant informa-
tion in the model card, i.e., a README-like document that provides information on
how to configure and run the PTM at hand [247]. Leveraging this amount of infor-
mation, recent research has started to investigate qualitative aspects of the HF hub,
including ethical aspects.

In particular, Gao et al. [137] investigate how ethical concerns are documented on
Hugging Face and GitHub. In particular, the authors define a set of fairness-related
keywords and extend them using the KeyBERT model6. The process ends with 265

6https://maartengr.github.io/KeyBERT/api/keybert.html

https://maartengr.github.io/KeyBERT/api/keybert.html

Chapter 8. Preliminary Insights on Bias and Fairness of LLMs 135

FIGURE 8.3: PTMs and their categories

relevant ones belonging to six different themes, revealing that ethical concerns are
reported in open-source PTMs. In our work, we move a step forward by 1) extend-
ing the set of keywords with fairness assessment-related terms and 2) inspecting
the source code of the PTMs that support classification tasks extracted from the HF
dump.

8.2.2 Methodology

Before describing the process in detail, we define the following research questions
that drive our research:

RQ1 Which classification PTMs are adopted in the GitHub ecosystem?

As also discussed in Chapter 2, fairness assessment is mostly applied in clas-
sification tasks. Thus, we first perform an exploratory study to understand to
what extent classification PTMs are employed in GitHub projects. To this end,
we collect PTMs that are actually used in GitHub, searching for them in the
source code. In addition, we inspect the quality of the GitHub projects that use
those PTMs according to well-established guidelines [248].

RQ2 To what extent are classification PTMs coupled with fairness assessment libraries?

While state-of-the-art fairness assessment libraries are widely adopted in the
traditional assessment process, the link between those libraries and PTMs has
not been investigated yet. Thus, we leverage the mined data from GitHub to
inspect to what extent the three notable libraries are used in OSS projects built
on top of classification PTMs.

Figure 8.4 describes the proposed methodology. Starting from the HF dump,
we first retrieve the PTMs that are relevant to our study, i.e., models that cover
four different classification tasks. Afterward, we filter the models according to the

Chapter 8. Preliminary Insights on Bias and Fairness of LLMs 136

Tag Filtering Github MappingHF dump HF PTMs

Mapped reposUsage analysis

{image,token,text,tabular}

262,670 PTMs 57,737 PTMs

Fairness
filtering

54 repo 119 .py file

code:{aif360, fairnlearn, fairkit-learn}
text: {assessment keywords}(5) + {fairness keywords} (128)

Final dataset

19 fairness-related PTMs

language=Python
ptm_name IN code

FIGURE 8.4: Overview of the proposed approach

number of downloads and map them to the corresponding Github repositories. We
eventually elicit repositories that employ prominent PTMs in fairness-related tasks
by searching both relevant keywords and dedicated software libraries, i.e., AIF360,
Fairlearn, and Fairkit-learn.

8.2.3 Data collection and curation

The first step involves the usage of the latest available dump from the HF commu-
nity website,7 specifically from June 2024. While we acknowledge that the dump
of October 2024 is available, it has been released only recently, thus preventing
us from using it in our analysis. We deployed this dump locally into a MySQL
database to expedite the data retrieval process. Within the scope of this paper,
we focus on PTMs that support automated classification of both images and text.
In particular, we include in our search PTMs labeled with text-classification,
token-classification, image-classification, and tabular-classification. Ad-
ditionally, we collected information for each pre-trained model, including the num-
ber of likes and downloads, facilitating further qualitative filters. For these purposes,
we employed the MySQL connector Python library8 to interact with the HF dump.

LISTING 8.1: SQL query.
"SELECT model.model_id ,repository.card_data ,
model.pipeline_tag ,model.likes ,downloads"
"FROM model ,repository
WHERE model.model_id = repository.id"
"AND (model.pipeline_tag = ’text -classification ’
OR model.pipeline_tag = ’image -classification ’"
"OR model.pipeline_tag = ’token -classification ’
OR model.pipeline_tag = ’tabular -classification ’);"

The SQL query used for this interaction is provided in Listing 8.1. This process
resulted in a CSV file containing PTMs along with the aforementioned metadata.

7https://som-research.github.io/HFCommunity/download.html
8https://pypi.org/project/mysql-connector-python/

https://som-research.github.io/HFCommunity/download.html
https://pypi.org/project/mysql-connector-python/

Chapter 8. Preliminary Insights on Bias and Fairness of LLMs 137

8.2.4 Github mapping

The next step involves the mapping of the identified PTMs to the GitHub reposito-
ries that make us of the elicited models. To this end, we exploit PyGithub python
library 9 to collect the corresponding GitHub repositories. In particular, we focus on
projects that are written in Python, as the PTMs are commonly imported using the
HF transformers utils10. During the mining phase, we also collect the content of the
README file and the source code stored in .py files, plus relevant metadata related
to the repository, i.e., stars and forks. It is worth noting that we marked if the PTM
is actually used in the source code using a boolean variable. This phase may lead
to false positive values, in particular repositories that do not contain the searched
PTMs due to i) page limit for each query and ii) erroneous mapping with the model
name. To mitigate this, we search the exact model string in the source code, thus
ensuring that the PTM is actually used.

8.2.5 Fairness filtering

The last step of the data collection process is the identification of fairness-related
repositories, i.e., the ones that mention fairness aspects in the documentation or
employ dedicated libraries in the source code. Gao et al. [137] already inspected
Hugging Face and GitHub repositories to find how ethical aspects have been doc-
umented. In the scope of our paper, we leverage the list of keywords identified by
Gao et al., consisting of 128 distinct terms, collectively referred to as the FAIR key-
word set. To enhance the scope of our analysis, we augment this set with additional
keywords specifically focused on the assessment process, forming the ASSESS key-
word set. Both sets of keywords are combined using an AND clause to ensure the
retrieval of only relevant projects. Furthermore, we analyze the source code to in-
vestigate whether state-of-the-art libraries commonly used for fairness assessment
are employed in conjunction with PTMs. For this purpose, we define the following
sets of keywords:

• Text-search – FAIR: (fairness OR ethics OR ... bias11) AND ASSESS: (toolkit OR
audit OR testing OR assessment OR accountability)

• Code-search – aif360 OR fairlearn OR fairkit-learn

where Text-search keywords are applied to search in README files, while Code-
search keywords are designed to identify import statements for the libraries under
consideration.

8.2.6 Usage analysis

LISTING 8.2: Example of retrieved data
1 {
2 " F a l c o n s a i/nsfw_image_detection " :
3 {
4 " r e p o s i t o r y " : " l u c a t a c o/cog−nsfw_image_detection " ,
5 " u r l " : " h t tps : //github . com/l u c a t a c o/cog−nsfw_image_detection " ,

9https://pygithub.readthedocs.io/en/stable/
10https://huggingface.co/docs/transformers/autoclass_tutorial
11For clarity, we have omitted the full list of 128 keywords, which are provided in the online ap-

pendix [50]

https://pygithub.readthedocs.io/en/stable/
https://huggingface.co/docs/transformers/autoclass_tutorial

Chapter 8. Preliminary Insights on Bias and Fairness of LLMs 138

6 " s t a r s " : 14 ,
7 " forks " : 4 ,
8 " f i l e s " : [
9 { " f i le_name " : " p r e d i c t . py " ,

10 " content " : <content >
11 . . .
12 }
13

14 " model_mentions_in_code " : true
15 }

Once the data has been collected, we analyze the results in terms of three differ-
ent aspects, i.e., the quality of the GitHub repositories, the PTMs mentioned in the
README and source code, and if the fairness assessment libraries are used in those
repositories. Concerning the quality of the GitHub projects, we mined information
related to stars and forks, as they are commonly used to identify well-maintained
projects [248]. Concerning the assessment of fairness-related attributes, we conduct
a manual analysis by carefully reading the README file and the source code to filter
out any false positives. Concretely, a false positive is a PTM that is mentioned in the
repository but actually is not used for fairness assessment. Contrariwise, we further
inspect projects that have a match in at least one of the two sets of keywords in the
README and in the source code files. All the results are eventually stored in a JSON
format to facilitate further analysis. A fragment of the retrieved data is depicted in
Listing 8.2. In particular, for each PTM, we collect all repositories that match the
defined query. For instance, the model Falconsai/nsfw_image_detection has been
used by the lucataco/cog-nsfw_image_detection project stored on GitHub. Fur-
thermore, the model has been mentioned in one of the source code files of the project,
i.e., the model_mentions_in_code variable is true.

8.2.7 Preliminary results

RQ1: Which classification PTMs are adopted in the GitHub ecosystem?

To answer this question, we first collect relevant GitHub repositories by applying
the process described in Section 8.2.4. In particular, starting from a total num-
ber of 57,737 that falls under *-classification type, we obtain a first set of 972
that contains the name of the PTM as stored in the HF dump. Afterward, we se-
lect only repositories among those that have at least one mention in the code of
a given PTM, ending up to 54 final number of relevant GitHub projects. This cu-
ration phase is needed to enable further quality analysis in terms of two aspects,
i.e., tag distribution and popularity depicted in Figure 8.5a and Figure 8.5b, re-
spectively. Concerning the tags distribution, text-classification models are the
most adopted, followed by image and token classification. Notably, PTMs tagged
as tabular-classification have not been used in the examined GitHub reposi-
tories, meaning that they are not so used in practice. Concerning the popularity
of the examined projects, we acknowledge that only one projects has more than
100 stars, i.e., adibvafa/CodonTransformer, while the best project in terms of forks is
SuwaidAslam/AI_Generated_Text_Checker_App with 14 forks. In addition, we report
that most of the considered repositories have not been forked, meaning that they are
not re-used by GitHub users. Our hypothesis is that those are toy projects created
with the only purpose of experimenting with a specific PTM.

Overall, the quality of the projects is low, as the average values for stars and
forks are 19.6 and 2.7, respectively. To further analyze the project’s complexity, we
count the number of source code files ending with .py. The results show that each

Chapter 8. Preliminary Insights on Bias and Fairness of LLMs 139

project has, on average, 2.33 files, with a maximum and minimum value of 8 and 1,
respectively. Therefore, our hypothesis is that PTMs that support classification are
used as black-box tools for very specific tasks, motivating further investigation in
the fairness domain.

Answer to RQ1: Overall, we report that PTMs that target classification problems
are not so popular in the GitHub community. Moreover, the quality of projects
that actually implement PTMs in the code is low, as shown by the low number of
stars, forks, and files.

tex
t

im
ag

e
tok

en
0

5

10

15

20

25

30

(A) Tag distribution

Ad
ibv

afa

Su
waid

Asla
m

ha
tm

im
oh

a

luc
ata

co

ser
pa

pi

Wikid
ep

ia

Ansh
ler

luc
ata

co

sad
ick

am

koi
oa

nn
is0

20

40

60

80

100 Stars
Forks

(B) Stars and forks distribution

FIGURE 8.5: Statistics for the mapped GitHub projects.

RQ2: To what extent are classification PTMs coupled with fairness assessment
libraries?

Once relevant GitHub repositories have been identified, we apply a further refine-
ment by selecting only fairness-related projects leveraging the set of keywords de-
fined in Section 8.2.5. This step produces only 19 relevant GitHub repositories that
match at least one of the two sets of keywords, i.e., Text-search and Code-search.
Table 8.6 summarizes the PTMs that match the identified requirements. We also re-
port the GitHub repositories that employ them, the stars, forks, and if the model
is used in the code. Interestingly, only two models are actually used in fairness-
related projects, while the others represent false positives. By carefully inspecting
them, we discovered that FactKB GitHub repository represents the mirror of the
PTM stored in the HF hub. Meanwhile, the SimpleAISentimentAnalysis project makes
use of sentiment-roberta-large-english PTM for detecting positive and negative tenses.
Even though further analysis needs to be conducted to confirm such results, our
initial findings reveal that PTMs are not used in the fairness assessment process, at
least in the GitHub community.

Noteworthy, none of the inspected repositories employs the selected fairness as-
sessment libraries. This is quite expected since none of the PTMs can be directly
linked with fairness-specific tasks, except for sentiment analysis. Therefore, we can
conclude that none of the PTMs have been used in the traditional fairness assess-
ment process, shedding light on further investigation in this domain.

Answer to RQ2: Overall, there is no evidence of the direct usage of PTMs in fair-
ness assessment, as confirmed by both automated and manual analysis. In this
respect, we see the need for further research in the domain that could lead to new
opportunities for practitioners.

Chapter 8. Preliminary Insights on Bias and Fairness of LLMs 140

TABLE 8.6: Fairness-related repositories analysis

Model Used by Text-search Code-search Stars Forks Code usages

sentiment-roberta-large-english SimpleAISentimentAnalysis True False 1 0 1
FactKB FactKB True False 18 0 0
CodonTransformer Adibvafa True False 103 4 1

cor-c/test
limonyellow True False 0 0 0
andyvzcode True False 0 1 0
sinchuk140995 True False 0 0 0

black/simple_kitchen danderfer True False 97 18 0

influencer/model

zhangylch True False 23 4 0
JulioRena True False 0 0 0
rakomar True False 1 0 0
sachink382 True False 13 7 0
workspace-for-cross-modality True False 4 0 0

thothai/thoth worst-boy True False 1 0 0

time-machine/test

amazon-archives True False 20 12 0
aws-solutions True False 42 24 0
MaorOzana True False 21 1 0
danderfer True False 98 18 0

vegetable/test
Grzegorr True False 0 0 0
danderfer True False 98 18 0

8.2.8 Threats to validity

This section discusses the threats that may hamper the findings of our work and the
corresponding mitigations.

Internal validity concerns the adopted methodology to collect the data used to
investigate the relationship between fairness assessment and PTMs. In particular, we
acknowledge that using the dump instead of mining the models directly using the
API can lead to inaccurate results, i.e., recent models are excluded from the analysis.
In the scope of the paper, we focused on PTMs that support classification stored in
the dump. Furthermore, our methodology can be easily replicated on additional
data as it is founded on widely adopted methodology, i.e., we rely on a dedicated
Python library for collecting data from GitHub, filtering out irrelevant results using
the GitHub query language.

The main concern to external validity is the generalizability of our results, i.e.,
considering other model repositories or open-source projects may lead to different
outcomes. To mitigate this, we leverage HF platforms as it stores all the PTMs that
are relevant to our analysis. In addition, we conduct a manual analysis to filter
out any possible false positives, i.e., GitHub projects that are identified as relevant
but actually are not. Moreover, searching fairness keywords only on README files
may negatively impact the number of retrieved GitHub repositories, i.e., relevant
projects can be missed. In this respect, we adopt the same approach by Gao et al.
[137], in which the authors perform the same search on README and model cards.

8.3 Conclusion

In this chapter, we presented two preliminary analyses concerning fairness issues
with large language models. First, we have shown how Stable Diffusion (i.e., text-
to-image generation) models expose a significant gender and ethnicity bias when gen-
erating Software Engineer figures. Next, we have shown how there is no evidence
on GitHub of the coupled adoption of fairness assessment libraries and pre-trained
models. Both analyses raise serious concerns about the fairness learning-based sys-
tems employing LLMs and should motivate additional research in this context.

141

Part II

Efficiency of Learning-Based
Systems

142

Chapter 9

Background and Related Work on
Efficiency of Learning-Based
Systems

In this chapter, we describe works related to the efficiency of learning-based systems.
In particular, we discuss approaches that are related to the topics presented in this
part of the thesis. First, in Section 9.1, we discuss existing approaches to estimate
the training time of traditional ML models. Next, in Section 9.2, we focus on works
related to LLMs’ efficiency. In detail, we review compression strategies for large
language models of code and approaches to improve the efficiency and effectiveness
of text-to-image generation models.

9.1 Review of Existing Approaches to Estimate the Training
Time of Traditional Machine Learning Models

In this section, we review approaches aiming to estimate the training time of tradi-
tional ML models. This exploration seeks to identify approaches that could guide
data scientists during the model requirement phase in selecting ML models whose
training time is lower than a given threshold. Eventually, such an approach could
be integrated into tools like MANILA or MODNESS (see Chapter 6) to further guide
data scientists in developing learning-based systems that are not only fair but also
efficient.

9.1.1 Methodology

We performed a lightweight systematic literature review following the same pro-
cess described in Chapter 3. In particular, we follow the well-established "four W-
questions strategy" [94] to guide our search as follows:

• Which? We search for relevant peer-reviewed papers published in conferences
and journals;

• Where? We do not limit our search to specific conferences or journals since the
topic of training time prediction could be of interest to many research domains
like software engineering or artificial intelligence;

• What? For each article, we extracted information from the title, abstract, and
keywords about the training time prediction of ML-based systems using the
keywords reported in Listing 9.1.

Chapter 9. Background and Related Work on Efficiency on LBS 143

• When? We are interested in all papers addressing the topic of training time
prediction. Thus, we do not limit our search to a specific time frame.

The answers to those questions derived the search string depicted in Listing 9.1
that has been used to query the Scopus database [249].

TITLE -ABS -KEY ((" machine learning" OR "deep learning" OR "artificial
intelligence ") AND ("training time prediction" OR "training time
estimation" OR "training complexity prediction" OR "complexity time
prediction" OR "complexity time estimation")) AND (LIMIT -TO (LANGUAGE ,
"English")) AND (LIMIT -TO (SRCTYPE , "p") OR LIMIT -TO (SRCTYPE , "j"
))

LISTING 9.1: Search string

The query was run in March 2025 and extracted 39 papers. Additionally, we ex-
tended our search by applying the same query on Google Scholar, obtaining a total
of 73 papers. Starting from this initial set, we manually inspected the title and ab-
stract of each paper to filter down our search. In particular, we applied the following
criteria:
✔ Inclusion criteria: We included all approaches that aim to predict the training
time of learning-based systems. We consider both approaches relying on AI- and
ML-based techniques, as well as approaches that formalize the training time of
learning-based systems as functions of different parameters.
✖ Exclusion criteria: We excluded papers not directly focused on training time pre-
diction (like empirical studies on the training time of different ML models), as well
as surveys, mapping studies, and foundational papers. In addition, we have not
considered papers that have been extended by subsequent works made by the same
authors.

Eventually, from this meticulous process, we derived 16 papers, which we sum-
marize in the following subsection.

9.1.2 Selected Works

Most approaches focus on predicting the training time of deep learning models, as
they are generally more computationally expensive than traditional ML models. Ad-
ditionally, we observe how representing a deep learning model as a Directed Acyclic
Graph (DAG) is a common practice to predict the training time of the model.

In [250] Gao et al. proposed DNNPerf, an ML-based approach to predict the run-
time performance of deep learning models using Graph Neural Networks. The au-
thors represent a deep learning model as a directed acyclic graph incorporating a set
of computational features collected from empirical evaluations of different environ-
ments.

Similarly, Yang et al. rely on Graph Neural Networks to predict the resource con-
sumption of diverse deep learning systems [251]. In addition, the authors propose
a transfer learning mechanism to adapt Graph Neural Network to different work-
loads.

The DAG representation of deep learning models is instead adopted by Li et al. to
develop a runtime simulator of a deep learning model [252]. The simulator is used
to predict the end-to-end latency of deep learning models on different hardware
platforms.

Similar to the runtime simulator proposed by Li et al., Esposito et al. presented
a simulator to predict the training time of distributed neural networks [253]. The

Chapter 9. Background and Related Work on Efficiency on LBS 144

authors rely on a mathematical model of the distributed architecture and resource-
allocation heuristics to predict the training time of deep neural networks under dif-
ferent environments.

Differently from the works described above, Lin et al. propose a critical-path-
based algorithm to predict the per-batch training time of Deep Learning Recom-
mendation Models by traversing its execution grap on GPU environments [254].

Still focusing on deep learning models, Lattuada et al. proposed a framework
to predict the training time of deep learning models under different environments
[255]. The authors leverage features from the dataset, layers of the model, and hard-
ware environment to train different machine learning models for training time pre-
diction.

Pourali et al. extended the work presented by Lattuada et al. by proposing PreNet,
a framework to predict the training time of deep learning and transformer-based
models under different environments [256].

LATTE is a framework proposed by Wang et al. specifically designed to predict
the training time of distributed models in a federated learning setting [257]. The goal
of the framework is to select the best model layers to deploy such that the training
of each layer is synchronized. Like the previous approaches, LATTE relies on model
and hardware features to train a Multi-Linear Perceptron model to identify the best
model layers to deploy.

Zancato et al. addressed the problem of predicting the number of optimization
steps a deep neural network requires to converge to a given value of the loss function
[258]. They approximate the training of a deep neural network as the one of a linear
model and predict the training loss and accuracy during the training phase solving
a Stochastic Differential Equation. With this result, the authors can predict the time
required by a Stochastic Gradient Descent algorithm to converge to a given value of
the loss function.

Regarding works that do not focus specifically on deep learning models, Paun
et al. focused on predicting the training time for recommender systems [259]. They
train a preliminary model that, given features of the dataset and of the model, is able
to predict the training time required by the recommender system.

In [260], Sivakumar et al. presented a framework to evaluate the efficiency of dif-
ferent ML models by incorporating metrics such as training time, inference time,
memory usage, and resource utilization. The framework relies on the Analytic Hi-
erarchy Process to automatically rank the models based on the considered metrics.
However, their approach does not provide a method to predict the training time of
ML models a priori.

In [261], Kwon et al. performed empirical analyses to assess the impact of dif-
ferent dataset characteristics, such as sample size, class type, missing values, and
dimensionality, on the performance of classification algorithms, considering both
accuracy and elapsed time.

In [262], Ali et al. derived a rule-based learning algorithm from an empirical eval-
uation of the performance of eight classifiers on 100 classification datasets, compar-
ing them based on various accuracy and computational time measures. The em-
pirical results were combined with the dataset characteristic measures to formulate
rules to determine which algorithms were best suited for solving specific classifica-
tion problems.

In [263], Mohr et al. developed a model to predict the running time of ML pipelines
through empirical analysis of different ML algorithms with a heterogeneous set of
data. The approach was used to predict the timeout of an ML pipeline.

Chapter 9. Background and Related Work on Efficiency on LBS 145

Considering non-empirical analyses that do not focus only on deep learning
models, to the best of our knowledge, the work from Zheng et al. in [52] is the first
attempt to provide an a priori estimation of the training time for various ML mod-
els without actually training them. In their work, the authors propose a method to
quantitatively evaluate the time efficiency of an ML classifier called Full Parame-
ter Time Complexity (FPTC). The authors derive FPTC for five classification mod-
els, namely Logistic Regression, Support Vector Machine, Random Forest, K-Nearest
Neighbors, and Classification and Regression Trees. FPTC depends on several vari-
ables, including the number of attributes, the size of the training set, and intrinsic
characteristics of the algorithms, such as the number of iterations in Logistic Re-
gression or the number of Decision Trees in a Random Forest. A coefficient ω was
introduced to establish the relationship between the running time and FPTC. The
coefficient ω can be obtained through a preliminary experiment on a small sam-
pled dataset under different execution environments. When the physical execution
environment changes, the coefficient ω should be reevaluated to reflect the new con-
ditions.

Based on this state-of-the-art analysis, we observe that most of the studies con-
cerning the training time of ML models either focus specifically or tend to rely on
empirical studies. The only approach formalizing the training time as a function of
datasets’ and ML models’ parameters is the one proposed by Zheng et al. [52]. In
Chapter 10, we aim to highlight the strengths and weaknesses of this approach by
conducting an extensive evaluation of the method to address how suitable it is for
its adoption in tools like MANILA or MODNESS.

9.2 LLMs Efficiency

In this section, we review existing approaches related to the efficiency of LLMs. We
first provide background knowledge on the concept of model compression and re-
view standard approaches to compress LLMs. Next, we discuss existing approaches
aiming at improving the efficiency and effectiveness of text-to-image generation
models. Both those concepts are further covered in Chapter 11.

9.2.1 Compression Strategies for Large Language Models

A major obstacle to the practical adoption of language models has always been
their significant computational cost [39], [264]. To address this issue and increase
their sustainability, the AI community has developed various strategies to reduce
the memory demands and inference latency of these models. Nowadays, the three
most popular model compression strategies are [265], [266]: knowledge distillation
[40], quantization [41], and pruning [42].

Knowledge distillation is a technique in which a smaller model (i.e., the “stu-
dent”) is trained to replicate the behavior of a larger, pre-trained language model
(i.e., the “teacher”). This compression strategy results in a model that demands less
memory and provides faster inference time. However, since student models usually
have thinner and shallower neural networks, they often struggle to fully capture
the knowledge embedded in the larger models. This limitation typically leads to a
reduction in the LLM capabilities compared to the teacher model [267].

Quantization is a compression strategy that reduces the precision of the model’s
weights, converting them from full-precision (e.g., 32-bit floating point) to lower

Chapter 9. Background and Related Work on Efficiency on LBS 146

precision representations (e.g., 8-bit integer). Two broad categories of quantiza-
tion strategies exist: post-training quantization and quantization-aware training. Post-
training quantization generates a quantized model from an existing full-precision
model without requiring additional training or fine-tuning. This strategy is a pop-
ular choice due to its low computational cost. However, it is more susceptible to
quantization noise. In contrast, quantization-aware training involves training the
model from scratch while incorporating simulated quantization operations to miti-
gate the quantization noise. Although this approach can produce a more effective
model, its high training costs can make it often impractical.

Pruning aims to make the language model more efficient by removing neural
network weights considered less critical for the model’s effectiveness [268]. Various
pruning methodologies exist. For instance, structured pruning modifies the model’s
architecture by removing entire structures within the neural network, such as neu-
rons, filters, or even layers [269]. Conversely, unstructured pruning targets individual
weights [270], removing the less relevant ones (e.g., those close to zero). Pruning
can be applied either to individual layers of the network (layer-wise pruning)[271], or
across the entire model (global pruning) [272].

Model compression strategies have recently gained relevance in the software en-
gineering literature. Shi et al. [266] introduced Compressor, a knowledge distillation-
based approach, evaluated on CodeBERT [66] and GraphCodeBERT [273] for two
code classification tasks (i.e., vulnerability detection and clone detection). Their re-
sults demonstrate that Compressor can considerably accelerate inference time with
minimal impact on model effectiveness. In a subsequent study [265], the authors
expanded their approach to tackle energy consumption and carbon footprint con-
cerns. Wei et al. [274] conducted an empirical evaluation of quantized models on
code generation tasks, examining resource usage, carbon footprint, accuracy, and
robustness. They found that quantization, under specific settings, can substantially
enhance model efficiency with negligible accuracy or robustness trade-offs. Addi-
tionally, Sun et al. [275] explored dynamic inference as a method to speed up code
completion. Despite these advancements, there remains a noticeable gap in compre-
hensive studies that systematically investigate the effects of different model com-
pression strategies across various software engineering tasks.

We aim to fill this gap in Section 11.1 by performing an extensive empirical eval-
uation of the impact of the three most adopted compression strategies – knowledge
distillation, model quantization, and model pruning – on the inference time, model
size, and prediction’s effectiveness of an LLM fine-tuned for three widely adopted
SE tasks – vulnerability detection, code summarization, and code search.

9.2.2 Review of Approaches to Improve Efficiency and Effectiveness of
Text-To-Image Generation Models

Very few works have been proposed so far to improve the efficiency and effective-
ness (i.e., image quality) of text-to-image generation models.

Magliani et al. [276] use GA to find the best diffusion parameters for automated
image retrieval from a dataset of images.

Focusing on image generation, Berger et al. [277] were the first to propose the use
of a Genetic Algorithm (GA) able to simultaneously tune the prompt and parameters
of Stable Diffusion to improve the quality of the generated images.

While some research [278], [279] has been carried out to optimize inference time,
from hardware design to model architecture, there has been limited work focusing
on optimizing the inference time of black-box models by only working on prompt

Chapter 9. Background and Related Work on Efficiency on LBS 147

and hyperparameters tuning. Building on the work of Berger et al., we present
GreenStableYolo. GreenStableYolo is a GA-based algorithm able to improve the in-
ference time and image quality of Stable Diffusion models by simply tuning the hy-
perparameters and prompt structure. Thus, it can be applied to the black-box model
without requiring any intervention in its architecture. GreenStableYolo is presented
in detail in Section 11.2.

148

Chapter 10

Towards Predicting the Training
Time of Machine Learning Models

The model training phase is generally the most computationally expensive phase of
a learning-based system development workflow [4]. Generally, the training of an
ML model is performed in dedicated environments with high computational power.
However, it may not always be possible to have access to those environments. More-
over, in contexts like MLOps and, in general, continuous learning systems - i.e., where
the ML model is constantly re-trained with new data [280] - the training cost may
become a significant factor in selecting the best model to deploy. For this reason,
having an a priori estimation of training time can be beneficial for data scientists dur-
ing the model requirement phase. In fact, this estimation may help them filter suitable
models, especially in situations where there is limited computational power avail-
able for training. In addition, such an estimation could be integrated in MANILA
to further assist data scientists during the development of fair and efficienct learning-
based systems.

In this chapter, we present initial insights towards a prediction of ML training
time. In particular, we present an extensive empirical evaluation of the Full Param-
eter Time Complexity (FPTC) approach proposed by Zheng et al. in [52]. As high-
lighted in Chapter 9, this is, to the best of our knowledge, the only approach so far
that formulates the ML training time as a function of the dataset’s and ML model’s
parameters. Specifically, we use the FPTC approach to predict the training time of a
Logistic Regression [53] and Random Forest [54] classifier on a heterogeneous set of
data, and we compare the predicted time with the actual training time of the method,
highlighting the main strengths and weaknesses of the approach.

This chapter describes the contribution CN4 proposed to address the challenge
CH4.

The rest of this chapter is structured as follows: Section 10.1 describes in detail
the FPTC approach; Section 10.2 presents the conducted experiment and the research
questions we want to answer; Section 10.3 shows the experiment’s results and dis-
cuss them with respect to the research questions; finally Section 10.4 discusses possi-
ble threats to validity, while Section 10.5 presents some future works and concludes
the paper.

10.1 FPTC Approach

In this section, we describe in detail the FPTC approach [52]. This method formulates
the training time of several ML models as a function of different parameters of the
dataset, of the model itself, and of a coefficient (ω) that reflects the influence given
by the execution environment on the actual training time of the model. This value

Chapter 10. Towards Predicting the Training Time of ML Models 149

should vary only when an ML model runs on a different execution environment.
We detail better in Section 10.2 how ω has been computed in our experiment. In
this analysis, we focus on the formulation of the training time for two particular ML
models, i.e., Logistic Regression (LogReg) [53] and Random Forest (RF) [54], while
we leave the analysis of other methods to future works.

The FPTC for the Logistic Regression classifier is defined as:

FPTCLogReg = F(Qm2vn) ∗ ωLogReg (10.1)

where n is the number of rows of the dataset, v is the number of dataset’s features,
m is the number of classes of the dataset, Q is the number of model’s iterations
during the training phase, and ωLogReg is the slope of a regression function computed
comparing the results of the first part of the equation 10.1 with the actual training
time of a Logistic Regression model using a subset of the training datasets.

The FPTC for the Random Forest classifier is defined instead as:

FPTCRF = F(s(m + 1)nv log2(n)) ∗ ωRF (10.2)

where n, m, and v are the same variables as above, while s is the number of trees
of the random forest. ωRF is again defined as the slope of a regression function
computed comparing the results of the first part of the equation 10.2 with the actual
training time of a Random Forest classifier on a set of synthetic datasets.

Concerning ω, the authors state that this variable reflects the influence given by
the execution environment on the actual training time of the model. Hence, this
value should vary only when an ML model runs on a different environment. We
detail better in Section 10.2 how ω has been computed in our experiment.

10.2 Experimental Setting

This section describes the experiments we conducted to evaluate the FPTC method.
In particular, with our experiments, we aim to answer the following two research
questions:

RQ1 Is the slope (ω) parameter of FPTC only dependent on the execution environment?

RQ2 Is the FPTC able to predict the training time of an ML model?

In Section 10.2.1, we describe the experimental setting conducted to compute the
slope parameter. In Section 10.2.2, we describe the experiment performed to predict
the training time of the Logistic Regression and Random Forest models. All the
experiments have been executed on a DELL XPS 13 2019 with an Intel Core i7, 16GB
of RAM, and Ubuntu 22.04.2 LTS.

10.2.1 Slope Computation

To answer RQ1, we must assess if the slope computation only depends on the exe-
cution environment. That is, given the same environment and the same ML model,
the slope should not change significantly if the dataset used to compute the slope
changes. To answer this question, we performed an experiment that computes a set
of slopes using a synthetic dataset Ds with 6,167 rows and 10,000 features. In partic-
ular, we calculate a set of slopes corresponding to 19 subsets of Ds, each one with a
different subset of features. Next, we compared the different slopes obtained. It is

Chapter 10. Towards Predicting the Training Time of ML Models 150

worth noticing that, in [52], the authors compute the slope on the same dataset on
which they want to predict the training time. In this experiment, we use a synthetic
dataset different from the ones on which we predict the training time. We have cho-
sen a synthetic dataset instead of a real one to have better control over its number
of features and instances. In addition, a synthetic dataset can be easily released and
used for computing the slopes in further experiments.

Algorithm 4: Slope computation
Input: (Synthetic dataset Ds, ML Model M, Number of starting features

f = 501, Number of features to add a = 501, Number of starting rows
s = 100, Number of rows to add p = 1, 000)

Output: (List of slopes at increasing number of features)
1 n = number of rows of Ds // in our case 6.167
2 m′ = number of features of Ds // in our case 10.000
3 slopes = {}
4 for i ∈ 20 do
5 D′

s = subset of Ds with f features
6 while features of D′

s < m′ do
7 tt = []
8 fptcs = []
9 m = features of D′

s
/* split D’ into sub-datasets and get training times and

fptc */
10 for (r = s; r < n; r+ = p) do
11 D′′

s = dataset of r rows from D′
s

12 train M on D′′
s

13 t = training time of M
14 fptc = getFPTC(D′′

s , M)
15 add t to tt
16 add fptc to fptcs

17 reg = LinearRegression()
18 train reg on tt and fptcs
19 ω = slope of reg
20 append ω to slopes[m]
21 D′

s = D′
s + a other features from Ds

22 for m ∈ slopes keys do
23 slopes[m] = median of slopes[m]

24 return slopes

Algorithm 4 shows the procedure we followed to compute the slopes. The algo-
rithm takes as input a synthetic dataset Ds, an ML model M (in our case, M is either
a Logistic Regression or a Random Forest classifier), and a set of parameters useful
for the analysis: f , i.e., the number of starting features of the synthetic dataset Ds; a,
i.e., the number of features to add at each iteration; s, i.e., the number of rows of the
first sub-dataset used to compute the slope; and p, i.e., the number of rows to add
to each other sub-dataset. In our case, f = 501, a = 501, s = 100, and p = 1.000.
The algorithm returns a list of slopes, each one corresponding to a subset D′

s of Ds
with a number of features lower or equal to the ones in Ds. At the first iteration, D′

s
has 501 features. Next, D′

s is split into a set of sub-datasets D′′
s with an increasing

Chapter 10. Towards Predicting the Training Time of ML Models 151

number of rows ranging from 100 to the total number of rows. Each sub-dataset has
a delta of 1000 rows. These sub-datasets are used to compute the training time of the
model M and the relative FPTC prediction using equations 10.1 and 10.2 for Logis-
tic Regression and Random Forest, respectively. After computing the training times
and the FPTC predictions for each sub-dataset D′′

s , the training times and the FPTC
predictions are used to train a Linear Regression model and to get its slope ω. The
obtained slope is added to a dictionary of slopes with the key equal to the number
of features of D′

s. Finally, the number of features of D′
s is increased by 500. This pro-

cedure continues until the number of features of D′
s equals the number of features of

Ds. This whole process is repeated 20 times, and the median slope of each subset D′
s

is finally returned.

10.2.2 Training Time Prediction

To answer the RQ2, we conducted a set of experiments to predict, using the FPTC
method, the training time of a Logistic Regression and a Random Forest classifier
using 7 heterogeneous datasets. Then we compared the predicted training time with
the actual training time of the method. Algorithm 5 reports the experiment’s pseudo-

Algorithm 5: Training time prediction
Input: (Dataset D, ML Model M, List of slopes S)
Output: (List of Root Mean Squared Errors RMSE, List of Mean Absolute

Percentage Error MAPE)
1 trainingTimes = []
2 for i ∈ 100 do
3 train M on D
4 t = training time of M
5 add t to trainingTimes

6 tt = mean(trainingTimes)
7 RMSE = []
8 MAPE = []
9 for ω ∈ S do

10 FPTC =getFPTC(D, M, ω)
11 rmse = getRMSE(tt, FPTC)
12 mape = getMAPE(tt, FPTC)
13 add rmse to RMSE
14 add mape to MAPE

15 return RMSE, MAPE

code. The algorithm takes as input a dataset D, the ML model M, and the list of
slopes S computed with the procedure described in Algorithm 4, and returns a list
of Root Mean Squared Errors RMSE [281] and Mean Absolute Percentage Errors
MAPE [282], one for each slope. The experiment can be divided into two steps. In
the first step, the algorithm computes 100 times the training time of the ML model
M on D and then calculates the mean of the times. In the second step, for each slope,
ω, the algorithm computes the FPTC and the RMSE and MAPE between the actual
training time and the FPTC. Finally, the list of errors is returned.

Chapter 10. Towards Predicting the Training Time of ML Models 152

In the evaluation, we have employed 7 heterogeneous datasets which differ in
terms of dimensions to evaluate if the FPTC method works better under datasets1.
The involved datasets are reported below:

• Adult Income (Adult)[152]: this binary dataset comprises 30,940 instances by
101 features. The goal is to predict if a person has an income higher than 50k a
year;

• Malicious Executable Files (Antivirus)[283]: this binary dataset comprises 373
instances and 531 features to predict if an executable file is malicious or not;

• APS Failure at Scania Trucks (APS)[284]: a dataset of 6000 instances and 162
features to predict if the failure of a Scania Truck is related to a failure in the
APS system or not;

• Arcene Dataset (Arcene)[285]: this binary dataset comprises 100 instances
and 10,000 features to distinguish cancer versus normal patterns from mass-
spectrometric data;

• ProPublica Recidivism (Compas)[153]: this binary dataset is made of 6,167
instances by 399 features. The goal is to predict if a person will recidivate in
the next two years;

• Dexter Dataset (Dexter)[286]: a dataset of 300 instances and 20,000 features to
predict which Reuters articles are about corporate acquisitions;

• German Credit (German)[287]: This dataset consists of 1,000 instances and 59
features and is used to predict if a person has good or bad credit risk.

Concerning the ML classifiers, we used the implementations from the scikit-
learn library [145] and, following the hyper-parameters settings of [52], we set the
l2 penalty and sag solver for the Logistic Regression, while we set the number of
trees of the Random Forest classifier to 80. Finally, we set the maximum number of
iterations of the Logistic Regression to 10.000.

TABLE 10.1: Values of FPTC parameters for each dataset

Dataset Coefficients ML Methods Coefficients

Dataset Instances Features Classes LogReg Iters RF Trees

Adult [152] 30940 101 2 635 100

Antivirus [283] 373 531 2 840 100

APS [284] 60000 162 2 5068.73 100

Arcene [285] 100 10000 2 1089 100

Compas [153] 6167 400 2 721 100

Dexter [286] 300 20000 2 855.91 100

German [287] 1000 59 2 33.93 100

Table 10.1 synthesizes, for each dataset, the values of the different parameters of
the two FPTC formulations for Logistic Regression and Random Forest classifiers. In

1Before running Algorithm 5, following the guidelines reported in [145], all the data has been scaled
by removing the mean (µ) and by dividing the variance (σ) from each feature.

Chapter 10. Towards Predicting the Training Time of ML Models 153

particular, together with the dimensions of the datasets, we also report the number
of iterations required by the Logistic Regression to train and the number of trees of
the Random Forest.

10.3 Experimental Results and Discussion

In this section, we present the results of our experimental evaluation and discuss
them with respect to the research questions defined in Section 10.2.

10.3.1 RQ1: Slope Computation

Figure 10.1 reports the boxplot of the variation of the slopes computed with an in-
creasing number of features of the synthetic dataset. In particular, figure 10.1a re-
ports the slopes computed for the Logistic Regression classifier, while figure 10.1b
reports the slopes computed for the Random Forest classifier.

501 1002 1503 2004 2505 3006 3507 4008 4509 5010 5511 6012 6513 7014 7515 8016 8517 9018 9519
Number of features

1.775

1.800

1.825

1.850

1.875

1.900

1.925

Sl
op

e

×10
9

(A) Logistic Regression

501 1002 1503 2004 2505 3006 3507 4008 4509 5010 5511 6012 6513 7014 7515 8016 8517 9018 9519
Number of features

2

4

6

8

Sl
op

e

×10
10

(B) Random Forest

FIGURE 10.1: Slope variation with an increasing number of dataset’s
features

Concerning the Logistic Regression model, it can be seen (in figure 10.1a) how
the slopes have generally low variability. An exception is given by the slopes com-
puted with 501 and 1002 features which are, on average, higher than the others.
In particular, the median of the slopes computed using 501 features is around 0.02
points higher than the others, while the median of the slopes calculated using 1002
features is about 0.04 points higher than the others. In all the other cases, the median
slope ranges from 1.83 ∗ 10−9 to 1.85 ∗ 10−9.

Chapter 10. Towards Predicting the Training Time of ML Models 154

Concerning the Random Forest classifier, it can be seen from figure 10.1b how the
slopes present a higher variability among them, starting from a value around 8.5 ∗
10−10 using 501 features to a value of 2 ∗ 10−10 using 9519 features. In particular, it
can be noticed from the figure that the value for the slope tends to decrease with an
increase in the number of the dataset’s features.

Moreover, we study the significance of the results of the slopes by performing the
ANOVA test [161] for both experiments. This test checks for the null hypothesis that
all groups (i.e., all the slopes computed using the same number of features) have
the same mean; if the confidence value (p-value) is > 0.05, the null hypothesis is
confirmed. Concerning the Logistic Regression classifier, the test returned a p-value
of 0.002, meaning the groups do not have the same mean. However, performing
the same ANOVA test excluding the slopes computed with 501 and 1,002 features
returns a p-value of 0.352, accepting the null hypothesis of the same mean. This
means that, excluding the slopes computed with 501 and 1.002 features, all the others
have the overall same mean. Concerning the Random Forest classifier, the p-value
returned is 9.022 ∗ 10−222, confirming the high variability of the slopes.

From this analysis of the slope variations, we can conclude that the slopes do not
change only when the execution environment changes. Still, they are also related to
the number of features of the dataset used to compute them. This phenomenon is
particularly evident when using a Random Forest classifier.

Answer to RQ1: The slopes computed under the same execution environment but
using an increasing number of features are pretty stable for the Logistic Regression
classifier. Instead, they present a higher variance for the Random Forest classifier.
Hence, we can conclude how the slope is also related to the number of features of
the dataset used to compute them.

10.3.2 RQ2: Prediction Effectiveness

Figures 10.2 and 10.3 report the errors in the predictions of the FPTC method com-
pared to the actual training time of the Logistic Regression and Random Forest Clas-
sifier, respectively, for all the datasets described in Section 10.2. In particular, in each
figure, the left y-axis reports the RMSE, while the right y-axis reports the MAPE. On
the x-axis, we report the number of features of the synthetic dataset used to compute
the relative slope. Near each dataset name, we also report its number of features.

Concerning the Logistic Regression classifier, it can be seen from figure 10.2 how
the FPTC method can predict the training time of the model under some datasets
while it fails in the prediction of others. In particular, the FPTC method can pre-
dict the training time of the LogReg under the Antivirus dataset (with an RMSE and
MAPE almost equal to 0 using the slope computed with 9,009 features of the syn-
thetic dataset), Arcene (with an RMSE and MAPE almost equal to 0 using the slope
computed with 6,006 features), Compas (with an RMSE and MAPE almost equal to 0
using the slope computed with 4,004 features), and Dexter (with an RMSE and MAPE
almost equal to 0 using the slope computed with 501 features). In contrast, the FPTC
method is not able to predict the training time of the LogReg under Adult (with the
lowest MAPE equal to 9.5 using the slope computed with 1,503 features), and APS
(with the lowest MAPE equal to 9.0 using the slope computed with 1,503 features).
It is worth noting that the high MAPE for the German dataset may be influenced by
the low values of FPTC and true running time, causing this metric to increase [282].
This is also supported by a low value of the RMSE.

Chapter 10. Towards Predicting the Training Time of ML Models 155

1.6

1.7

1.8

1.9
R

M
SE

10

11

Adult (101 Features)

0.05

0.06

0.07

R
M

SE

4

5

6

Antivirus (531 Features)

37.5

40.0

42.5

9

10

11

M
AP

E

APS (162 Features)

0.2

0.3

2

3

4

M
AP

E

Arcene (10,000 Features)

1002 2004 3006 4008 5010 6012 7014 8016 9018
Number of Features for Slope Computation

0.0

0.1

0.2

0.3

R
M

SE

0

1

2

Compas (400 Features)

1002 2004 3006 4008 5010 6012 7014 8016 9018
Number of Features for Slope Computation

0.0

0.2

0.4

0.0

0.5

1.0

M
AP

E

Dexter (20,000 Features)

1002 2004 3006 4008 5010 6012 7014 8016 9018
Number of Features for Slope Computation

0.0044

0.0045

0.0046

0.0047

R
M

SE

23

24

M
AP

E

German (59 Features)

FIGURE 10.2: RMSE and MAPE at different slope values for LogReg

Table 10.2 reports the mean and standard deviation of the training time and FPTC
in seconds for each selected dataset. From this table, it can be seen how the FPTC
method tends to underestimate the real training time, especially in Adult (with a
delta of almost 2 seconds between the actual training time and the predicted one),
and APS (with a delta of almost 50 seconds between the actual training time and
the predicted one). Finally, following the low variability of the slopes computed in
Section 10.3.1, we notice how the slopes’ variation does not much influence the FPTC
predictions.

Figure 10.3 reports the same metrics computed for the Random Forest classi-
fier. Differently from the Logistic Regression classier, here we notice how the FPTC
method is more sensitive to the variation of the slopes, which lets the prediction in-
crease or decrease significantly. This behaviour is explained by the high variability
of the slopes shown in Section 10.3.1. In addition, it can be seen from the charts that
the FPTC method can always predict real training time under a specific slope value
achieving a value of zero for both RMSE and MAPE. However, we also notice how
the value of the slope leading to the optimal predictions is not constant and varies
between the datasets. The only dataset on which the FPTC method is not able to cor-
rectly predict the training time is the APS dataset, with the lowest MAPE of around
15 points.

Table 10.3 reports the mean and standard deviation of the actual training time
and the predicted one for the Random Forest classifier. Differently from above, in
this case, we notice a higher variability among the predicted training times, espe-
cially in Adult, APS, Compas, and Dexter. In addition, we notice how, for the APS
dataset (which is the one causing the worse prediction effectiveness), the FPTC

Chapter 10. Towards Predicting the Training Time of ML Models 156

TABLE 10.2: Mean and standard deviation of training time and FPTC
for LogReg model

Dataset Training Time (seconds) FPTC (seconds)

Adult 16.54 ± 0.042 14.77 ± 0.066

Antivirus 1.15 ± 0.012 1.214 ± 0.006

APS 400.156 ± 1.126 356.81 ± 1.803

Arcene 7.711 ± 0.012 7.953 ± 0.006

Compas 12.802 ± 5.366 12.956 ± 0.065

Dexter 37.597 ± 0.403 37.5 ± 0.188

German 0.019 ± 0.003 0.015 ± 7.342 ∗ 10−5

0

2

4

6

R
M

SE

0

100

200

300

Adult (101 Features)

0

1

2

R
M

SE

0

1000

2000

3000

Antivirus (531 Features)

10

20

30

20

40

60

80

M
AP

E

APS (162 Features)

0

1

2

0

500

1000

1500

M
AP

E

Arcene (10,000 Features)

1002 2004 3006 4008 5010 6012 7014 8016 9018
Number of Features for Slope Computation

0

2

4

R
M

SE

0

200

400

Compas (400 Features)

1002 2004 3006 4008 5010 6012 7014 8016 9018
Number of Features for Slope Computation

0

5

10

0

2000

4000

M
AP

E

Dexter (20,000 Features)

1002 2004 3006 4008 5010 6012 7014 8016 9018
Number of Features for Slope Computation

1

2

R
M

SE

1000

2000

M
AP

E

German (59 Features)

FIGURE 10.3: RMSE and MAPE at different slope values for Random
Forest

method underestimates the real training time. Finally, as noticed above, the low
training time of some datasets (namely, Antivirus, Arcene, Dexter) explains the high
value of the related MAPE metric for them.

Finally, Figure 10.4 reports the non-parametric Spearman correlation coefficient
[200] between the FPTC parameters and MAPE for Logistic Regression (Figure 10.4a)
and Random Forest (Figure 10.4b)2. Concerning LogReg, we notice how MAPE is

2The number of classes and the number of trees for the RF are not considered because their values
are constant

Chapter 10. Towards Predicting the Training Time of ML Models 157

TABLE 10.3: Mean and stand. dev. of training time and FPTC for RF
model

Dataset Training Time (seconds) FPTC (seconds)

Adult 2.15 ± 0.012 2.60 ± 2.383

Antivirus 0.07 ± 8.368 ∗ 10−17 1.20 ± 0.711

APS 37.54 ± 0.698 11.49 ± 6.469

Arcene 0.13 ± 0.004 0.79 ± 0.874

Compas 0.99 ± 0.009 1.23 ± 1.758

Dexter 0.217 ± 0.005 2.76 ± 2.452

German 0.11 ± 0.004 1.3 ± 0.677

Rows Cols Iters Slope

M
AP

E

0.18 -0.51 -0.049 0.0034

(A) Logistic Regression

Rows Cols Slope

M
AP

E

-0.49 0.19 -0.055

(B) Random Forest

FIGURE 10.4: Spearman correlation coefficient between FPTC param-
eters and MAPE for LogReg and RF

negatively correlated with the number of features of the dataset (with a value of
-0.51). This means that, on average, there is a lower error in the training time pre-
dictions for datasets with a higher number of columns. On the contrary, MAPE is
lightly positively correlated with the number of instances of the dataset (with a value
of 0.18), meaning that, datasets with a high number of rows have a slightly higher
error in the predictions. Eventually, we notice a low correlation of MAPE with the
number of iterations and the values of the slope. In particular, the low correlation
between MAPE and slope can be explained by the fact that the value of the slope
leading to optimal predictions is not constant and varies with the datasets. Con-
cerning RF, it can be seen from figure 10.4b how there is an opposite correlation
between MAPE and the number of instances and features with respect to LogReg.
In fact, MAPE is negatively correlated with the number of rows (-0.49), while it is
lightly positively correlated with the number of columns (0.19). This means that
datasets with a high number of rows have, on average, a lower prediction error,
while datasets with a high number of columns have a slightly higher prediction er-
ror. Finally, as for the LogReg, we observe a low correlation between MAPE and
the values of the slope. This can be again explained by the fact that the slope value
leading to optimal predictions is not constant and changes with the dataset.

From this analysis, we can conclude how the FPTC method is able to predict the
training time of a Logistic Regression and Random Forest classifier under certain

Chapter 10. Towards Predicting the Training Time of ML Models 158

circumstances (i.e., datasets) while it is not working in others. However, as shown
in figure 10.4, we do not notice any high correlation between the FPTC parameters
and the correctness of the predictions. Moreover, we see how the correctness of
the predictions is directly related to the value of the slope, which is again not only
dependent on the execution environment but also varies with the variation of the
dataset used to compute it, as shown in Section 10.3.1. In addition, the value of the
slope leading to optimal predictions is not constant and varies between the different
datasets (especially with the RF classifier).

Answer to RQ2: The FPTC method is able to predict the training time of the Lo-
gistic Regression and Random Forest classifiers under certain circumstances (i.e.,
datasets), while it fails in others. The correctness of the predictions (especially for
the Random Forest classifier) is strongly related to the value of the slope, which,
however, depends on the dataset used to compute it and is not constant. Finally,
we observe how, for both LogReg and RF, there is no high correlation between the
FPTC parameters and the correctness of the predictions.

10.4 Threats to Validity

Internal validity: We adopted a synthetic dataset to compute the slopes to answer
RQ1. In contrast, a real-world dataset could include more complexity and variability
not considered in this experiment. To answer this threat, we clarify that the goal of
our experiment was to prove that the value of the slope is not only dependent on
the execution environment. Hence, any dataset (synthetic or not) that proves this
hypothesis is effective.
External validity: The results of our experiments may apply only to the selected
ML models and datasets. Concerning the selection of the dataset, we selected sev-
eral datasets heterogeneous in their dimensions, making our results enough general.
Concerning the ML models, we analysed two of the most adopted ML models for
classification, while we will analyse the others in future works.

10.5 Conclusion

Motivated by the need to support data scientists in selecting ML models to better
satisfy training time constraints, we have presented in this chapter the work we are
conducting toward predicting the training time of ML models.

In particular, we have extensively evaluated the work proposed in [52], which
is the only approach so far that formulates the training time as a function of the
dataset’s and model’s parameters. In this initial evaluation, we have considered the
formulations proposed for the Logistic Regression and Random Forest classifiers,
and we have shown how the proposed approach is not always able to predict the
training time successfully. Further, from the results shown in Section 6.2.3, there is
no evidence of any correlation between the dataset size and the correctness of the
predictions. Instead, from the results shown in Section 10.3.1, there is a correlation
between the number of dataset features and the value of the slope used in the FPTC
formulation (which is not only dependent on the execution environment as stated in
[52]).

159

Chapter 11

Analyzing and Improving the
Efficiency of Large Language
Models

While, as discussed in Chapter 10, the efficiency of traditional ML models is mainly
related to their training phase [4], the efficiency of Large Language Models signifi-
cantly affects their deployment phase in terms of size and inference (i.e., prediction)
time [39]. Implementing LLMs generally necessitates computations involving mil-
lions or even billions of learned parameters, leading to considerable memory re-
quirements and prolonged training and inference times. However, while the train-
ing and fine-tuning phases are generally performed in dedicated high-performance
environments, those models are then deployed and employed in devices with lower
computational resources (like traditional laptops) [39].

For this reason, researchers started to investigate the efficiency of LLMs from
the deployment perspective. In particular, as discussed in Chapter 9, different ap-
proaches have been proposed to compress LLMs, facilitating their deployment and
reducing their inference time. In Section 11.1, we perform an extensive empirical
evaluation of those compression strategies, investigating their impact on the effi-
ciency and effectiveness of LLMs fine-tuned for three SE tasks. In addition, we
present in Section 11.2 a novel approach to reduce the inference time of text-to-image
generation models while maintaining a high quality of the produced images. Finally,
Section 11.3 concludes this chapter.

This chapter describes the contributions CN7 and CN8 proposed to address the
challenge CH6.

11.1 Analysing the Effectiveness of Compression Strategies
for Language Models of Code

Since its introduction by Vaswani et al. [288], the transformer architecture has be-
come the de facto standard in language modeling. Transformer-based Large Lan-
guage Models (LLMs) have achieved state-of-the-art performance across numerous
natural language processing tasks [289]–[291], and have recently gained traction in
the SE field [264].

This trend has led to the development of several LLMs specialized in code, such
as CodeBERT [66], CodeT5 [292], and Codex [293]. These models are usually trained
in a two-step process: (i) a pre-trained step using a self-supervised training objective
aiming at providing the model with general knowledge about source code constructs
and patterns, and (ii) a fine-tuning step aiming at tailoring the model for the software
engineering task at hand.

Chapter 11. Analyzing and Improving the Efficiency of LLMs 160

Over the past few years, LLMs for code have been fine-tuned to automate a wide
range of SE tasks [264]. For example, CodeBERT – an encoder-only LLM based on
the BERT architecture [291] – has been widely and successfully applied to code sum-
marization [294], vulnerability detection [295], and code search [66], among others
[264].

However, despite their impressive capabilities, the widespread adoption of these
models is often hindered by practical challenges, particularly their high computa-
tional cost [39]. The deployment of LLMs typically requires computations across
millions or even billions of learned parameters, resulting in significant memory de-
mands and high inference latency.

To address this issue, as discussed in Chapter 9, AI researchers have developed
various strategies over the past decade to reduce the size and computational cost of
LLMs, including techniques such as knowledge distillation [40], quantization [41],
and pruning [42]. These "model compression" strategies can reduce the memory de-
mand of LMs and/or speed up their inference times, albeit often at the cost of re-
duced effectiveness (i.e., prediction correctness).

These strategies have recently begun to gain attention in the field of software
engineering [265], [266], [274]. For instance, Shi et al. [266] applied knowledge dis-
tillation to drastically reduce the memory size of models of code. Wei et al. [274]
have investigated the impact of quantization on code generation tasks regarding
inference latency, memory consumption, and carbon footprint. However, despite
these initial efforts, the broader impact of compression strategies on software engi-
neering tasks remains largely unexplored. Most existing research has focused on
specific compression strategies applied to individual SE tasks, making it difficult to
determine whether specific strategies perform better than others on particular tasks.
Additionally, it is unclear if the impact of different strategies varies by task or if they
demonstrate similar behavior across different software engineering tasks.

In this study, we investigate the impact of different model compression strategies
across three software engineering tasks: vulnerability detection (code classification),
code summarization (code-to-text generation), and code search (text-to-code recommen-
dation). We fine-tune a well-known language model for code, CodeBERT [66], on
each of these tasks. Subsequently, we assess how three model compression strategies
– namely, knowledge distillation, quantization, and pruning – affect (i) the effective-
ness of the LLM in performing the task, (ii) inference latency, and (iii) the model’s
memory size. Our results provide practitioners and researchers with guidelines on
balancing the trade-offs between effectiveness and efficiency when selecting a model
compression strategy.

11.1.1 Empirical Study Design

The goal of this study is to analyze the impact of compression strategies on the effi-
ciency (i.e., in terms of inference time and model size) and effectiveness (i.e., in terms
of prediction correctness) of language models for code. Specifically, we investigate
the impact of three compression strategies – knowledge distillation, pruning, and
quantization – on CodeBERT models fine-tuned for three SE tasks: vulnerability de-
tection, code summarization, and code search. We selected these tasks due to their
relevance in software engineering [275], [296]–[299] and because they span diverse
categories, namely code classification (vulnerability detection), code-to-text gener-
ation (code summarization), and text-to-code recommendation (code search). We
use CodeBERT as the reference language model due to its popularity in the software

Chapter 11. Analyzing and Improving the Efficiency of LLMs 161

Fine-tune for
Vulnerability Detection

Fine-tune for
Code Summarization

Fine-tune for
Code Search

Knowledge
Distillation

Model
Quantization

Model
Pruning

CodeBERT

Fine-Tuned
Models

Compressed
Fine-Tuned Models

Eval

Efficiency
Effectiveness

Eval

Efficiency
Effectiveness

Fine-Tuning Phase

Compression
Phase

FIGURE 11.1: Experimental Methodology

engineering literature [264] and its versatility in handling classification, generation,
and recommendation tasks [66].

Our research is driven by the following research questions:

RQ1 How do compression strategies impact the efficiency and effectiveness of models fine-
tuned for vulnerability detection?

RQ2 How do compression strategies impact the efficiency and effectiveness of models fine-
tuned for code summarization?

RQ3 How do compression strategies impact the efficiency and effectiveness of models fine-
tuned for code search?

To answer these RQs we carry out an empirical investigation based on the method-
ology described in the following. Figure 11.1 provides an overview of our experi-
mental methodology. We first fine-tune CodeBERT for each SE task of interest and
collect the corresponding effectiveness and efficiency metrics. Next, we apply each
of the three compression strategies individually to produce compressed versions of
the fine-tuned models. Finally, we compare the efficiency and effectiveness metrics
of the compressed models with those of the original fine-tuned CodeBERT model to
assess the impact of each compression strategy.

Table 11.1 shows the effectiveness and efficiency metrics used in our study. For
effectiveness, we consider specific metrics depending on the software engineering
task at hand. For instance, we use Accuracy, F1 Score and MCC to measure the ef-
fectiveness of the LLM for the vulnerability detection (i.e., code classification) task.
For efficiency, we focus on two aspects: inference time (in seconds) and model mem-
ory size (in MB). We collect inference time metrics for both CPU and GPU environ-
ments, as compression strategies are frequently used to adapt language models for
constrained hardware setups, such as desktop computers without dedicated GPUs.

Chapter 11. Analyzing and Improving the Efficiency of LLMs 162

TABLE 11.1: Evaluation Metrics

Task Task Metrics
Category Effectiveness Efficiency

RQ1
Vulnerability

Detection
Code-Code

Classification

Accuracy[148]
F1 Score[244]

MCC[300]

RQ2
Code

Summarization
Code-Text
Generation

Bleu[301]
BERTScore[302]

SIDE[224]

Inf. Time (sec.)
Model Size (MB)

RQ3
Code

Search
Text-Code

Search

MRR[303]
MRR@1[303]
MRR@5[303]

The experimental process took around ten days of machine execution over a CentOS
HPC cluster equipped with 32 Intel(R) Xeon(R) Gold 6140M CPUs and two Nvidia
A100 and A30 GPUs.

Software Engineering Tasks

Vulnerability Detection. In this task, the language model is prompted with a code
function and asked to predict whether it contains a security vulnerability. The model
produces a binary label indicating whether the code is vulnerable or not. We fine-
tune and evaluate CodeBERT using the Devign dataset by Zhou et al. [304]. This
dataset contains 27,318 C functions extracted from two popular open-source projects
(QEMU and FFmpeg). Each function is accompanied by a label that denotes whether
the code contains a security vulnerability or not.

Code Summarization. It is the task of automatically generating natural language
summaries (namely comments) for code snippets. The language model is given a
code function to produce code summary. We use a Sequence-to-Sequence (Seq2Seq)
model, which includes CodeBERT as encoder layer and a six-layer Transformer as
decoder layer. We fine-tune and evaluate CodeBERT on the CodeSearchNet dataset
[305]. This dataset contains 2 million code-comment pairs extracted from open-
source repositories written in different languages, such as Python, Javascript, Ruby,
Go, Java, and PHP. For this task, we focus on the Java programming language for a
total of 181,061 code-comment pairs.

Code Search. Given a natural language sentence (i.e., comment), this task aims
to retrieve semantically relevant code snippets. This is performed by first producing
the embeddings of the comment and the code snippets. Then the semantically sim-
ilar code snippets are ranked using the embedding similarity of sentence and code
(through inner dot product). We fine-tune and evaluate CodeBERT using the Code-
SearchNet dataset for the Python programming language, which contains a total of
280,634 code-comment pairs [305].

Following previous works [265], [266], we reuse the pipeline provided by the
CodeXGLUE benchmark [306] for all the aforementioned tasks. CodeXGLUE is a
popular benchmark which provides data and code for fine-tuning and evaluating
LMs on different code-related tasks. We extended the pipeline by adding the code

Chapter 11. Analyzing and Improving the Efficiency of LLMs 163

TABLE 11.2: datasets and lm hyper-parameters for each task

Task Dataset Hyper
Name Train Val. Test Params.

RQ1
Vulnerability

Detection
Devign [304] 21,854 2,732 2,732

Epochs: 5
Learning Rate: 2−5

RQ2
Code

Summarization
CodeSearchNet

(Java) [305]
164,923 5,183 10,955

Epochs: 10
Learning Rate: 5−5

RQ3
Code

Search
CodeSearchNet
(Python) [305]

251,820 9,604 19,210
Epochs: 2

Learning Rate: 2−5

required to compress the LMs using knowledge distillation, quantization, and prun-
ing.

For evaluation, we use the train, validation, and test splits as well as the same
model hyper-parameters provided by the CodeXGLUE benchmark. The size (in
terms of number of items) of each dataset split and the model’s hyper-parameters
are reported in Table 11.2.

Compression Strategies

Knowledge Distillation. Knowledge distillation is a computationally complex task,
as it typically involves re-training the “student” model from scratch. Given the ex-
tensiveness of our experimental setup, we opted not to retrain a distilled model our-
selves. Instead, we utilized a pre-trained distilled BERT model, namely DistilBERT
[267], which we fine-tuned for the specific SE task of interest. For vulnerability de-
tection and code search tasks, we directly fine-tuned DistilBERT. For code summa-
rization, we used DistilBERT as the encoder layer of a Seq2Seq model, which we
then fine-tuned using the same procedure.

Quantization. Model Quantization reduces a model’s size by changing its weights’
precision from the standard float32 to less precise data types. We apply post-
training quantization (see Chapter 9) implemented by the Hugging Face’s optimum-
quanto library.1 We chose this implementation because it requires minimum con-
figuration and supports CPU and GPU. We tested three different applications of
quantization by reducing the weights to int4, int8, and float8 (as, by the time we
ran our experiments, the library allowed those three reductions). Following the li-
brary’s documentation, we first quantized the fine-tuned model and then calibrated
its activation functions using the validation set. Finally, following again the docu-
mentation, we frozen the quantized weights before storing the model.

Pruning. In our experiments, we analyse the unstructured global pruning imple-
mented by the PyTorch library.2 We have chosen this implementation because it
does not change the internal structure of a network; hence, it does not require the
re-training of the model after its application. Following the work of Gordon et al.
on pruning BERT models [68], for each task, we prune the weights of all the lin-
ear layers of the network using the L1 norm as the selection strategy. The L1 norm
strategy uses the sum of the absolute values of a vector’s components to determine

1https://github.com/huggingface/optimum-quanto
2https://pytorch.org/tutorials/intermediate/pruning_tutorial.html

https://github.com/huggingface/optimum-quanto
https://pytorch.org/tutorials/intermediate/pruning_tutorial.html

Chapter 11. Analyzing and Improving the Efficiency of LLMs 164

the importance of structures within a neural network [307]. We analyse three dif-
ferent configurations of pruning: one in which we prune the 20% of weights in the
whole network (Prune 0.2), one in which we prune the 40% (Prune 0.4), and one in
which we prune the 60% (Prune 0.6). As done for quantization, we first fine-tuned
the models for each task and then pruned them. Finally, before storing the model,
we removed the internal copy of the original weights created by the PyTorch library
after the application of pruning.

Efficiency Metrics

For efficiency, we indicate the performance of a model in terms of the time required
to give a prediction (i.e., inference time) and the memory size of a model.

Inference time. We measure the inference time for each batch of the testing set.
Following the CodeXGLUE benchmark, we consider a batch size of 64 test instances
for each task. The inference time is measured both on CPU and GPU (CUDA). For
CPU, we use the time Python function, while for GPU, we use the Event class pro-
vided by PyTorch. Moreover, before computing the inference time on the GPU, we
perform a series of warm-up iterations to avoid inconsistencies in the results. In ad-
dition, we apply GPU synchronization after each inference iteration.
To assess the impact of compression strategies, we compare the inference time mea-
surements of each compressed model with those of the original fine-tuned Code-
BERT model. To ensure rigor, we follow performance engineering best practices
[308]–[311], specifically the approach proposed by Kalibera and Jones [312], to build
confidence intervals for the relative change in measurements statistics. Specifically,
we construct the confidence interval for the median relative change in inference time
using bootstrapping with 10,000 iterations, involving random resampling with re-
placement [313]. The main advantage of this technique, compared to others such
as the Wilcoxon test [314], is that it provides a clear and rigorous account of the in-
ference time change and the associated uncertainty [312], [313], [315]. For example,
this method allows us to state that a compressed model is faster than the original
CodeBERT model by -30%±2% with 95% confidence. We consider a difference to be
statistically significant if the confidence interval is not greater than the percentage
change.

Model size. To measure the model size, we save the model state in memory using
the save function provided by PyTorch and then calculate its size using the getsize
Python function. The value the function returns is converted to megabytes (MB). Al-
though we performed this process on both CPU and GPU, as expected, the models’
size remained unchanged between the two environments. Therefore, we do not dif-
ferentiate between CPU and GPU when reporting the models’ size in Section 11.1.2.

Effectiveness Metrics.

For effectiveness, we assess how good the predictions of a model are for a specific
task. Given the heterogeneity of tasks involved in our evaluation, we used different
metrics depending on the SE task being analyzed (see Table 11.1).

Vulnerability Detection. We use the Matthews Correlation Coefficient (MCC) as it
considers all quadrants of the classification matrix (i.e., it gives a comprehensive
overview of the model’s performance). It has been shown to be a reliable measure

Chapter 11. Analyzing and Improving the Efficiency of LLMs 165

when handling imbalanced data, as is often the case for vulnerability prediction
[239], [300], [316], [317]. MCC is defined as a correlation factor between the true and
predicted labels. It ranges from -1 to 1, where -1 means the model gives opposite
predictions, 0 means random predictions, and 1 means perfect predictions. In our
study, we also report on F1 Score [244] and Accuracy [148] for compatibility with
respect to previous work. The F1 Score is defined as the harmonic mean between
Precision and Recall. Accuracy is defined as the number of correct predictions over
the whole predictions of a model. Both F1 Score and Accuracy values range from 0 to
1, where 1 is the best value. Although the use of Accuracy is deprecated for problems
suffering from data imbalance [239], we include this measure in our analysis for
completeness as it is the metric employed by the CodeXGLUE benchmark. Still, we
discourage its use in practice as done in previous work [239].

Code Summarization. We employ three metrics that assess different aspects of the
quality of a generated text [318]. Bleu is the metric employed in the CodeXGLUE
benchmark and is a standard metric adopted in natural language translation and,
generally, text generation tasks [301]. It computes how similar a generated text is
with respect to a reference baseline by comparing overlapping n-grams (contiguous
sequences of n words) between the generated and reference texts. It is a metric of
summary-summary text similarity, but has been criticised for not considering the se-
mantic similarity between two texts [274], [318]. For this reason, we extended the
evaluation by including two additional metrics. BERTScore evaluates the quality of
a generated text by comparing the similarity between the BERT embeddings of the
generated text and the reference baseline [302]. It is a metric of summary-summary
semantic similarity [318]. Finally, SIDE is a metric based on contrastive learning that
measures how good a generated explanation is for a given code snippet without con-
sidering a reference baseline [224]. It is specific for code summarization tasks and is
a metric of summary-code semantic similarity [318]. All metrics range between 0 and 1,
where 1 is the optimum value.

Code Search. We employ three versions of the Mean Reciprocal Rank (MRR) score
[303]. We adopt this metric because it is used in the CodeXGLUE benchmark and is
by far the most commonly adopted metric in code search [319]. MRR measures the
average of the reciprocal ranks of the correct results for a set of code comments. The
reciprocal rank for a single code comment is defined as the inverse of the rank po-
sition where the correct corresponding code appears in the list of retrieved results.
In addition, we include two variations of MRR: MRR@1, which measures the pro-
portion of code comments where the correct code appears in the first position, and
MRR@5, which calculates the mean reciprocal rank based on the top five results.
These metrics all range from 0 to 1, with 1 representing the optimal score.

11.1.2 Empirical Study Results

In this section, we report the result of our empirical evaluation. For each RQ, we
discuss the impact of each compression strategy relative to the model’s efficiency
and effectiveness, as well as the trade-off between these two aspects.

Table 11.3 shows the results for each RQ. On each sub-table, the first row re-
ports the results of the plain CodeBERT model (i.e., without compression), while
the remaining rows show the percentage variations provided by each compression

Chapter 11. Analyzing and Improving the Efficiency of LLMs 166

TABLE 11.3: RQs 1-3: Efficiency and effectiveness of original and
compressed code models for each of the SE tasks.

(A) RQ1: Vulnerability Detection

Compression Efficiency Effectiveness
Method CPU Inf. Time GPU Inf. Time Model Size Accuracy F1 MCC

None 15.902 (sec) 0.011 (sec) 499 (MB) 0.630 0.541 0.247

Know. Distil. -39.8% ± 2.7% -47.7% ± 0.6% -48.8% -2.2% +3.1% -10.1%

Pruning (0.2) +15.5% ± 6.0% +9.1% ± 2.0% 0.0% -4.4% -41.0% -11.3%
Pruning (0.4) +18.8% ± 7.2% +6.2% ± 1.7% 0.0% -7.3% -61.0% -20.6%
Pruning (0.6) -67.9% ± 1.4% +7.3% ± 1.6% 0.0% -5.9% -49.2% -18.2%

Quantization (float8) +41.9% ± 16.3% +98.3% ± 3.2% -51.4% 0.0% -1.1% +0.4%
Quantization (int8) +102.2% ± 14.4% +107.4% ± 5.1% -51.4% -0.5% -0.9% -2.4%
Quantization (int4) +133.5% ± 26.3% +201.6% ± 4.8% -59.3% -1.6% -4.4% -8.5%

(B) RQ2: Code Summarization

Compression Efficiency Effectiveness
Method CPU Inf. Time GPU Inf. Time Model Size Bleu BERTScore SIDE

None 157.369 (sec) 23.692 (sec) 707 (MB) 18.791 0.888 0.871

Know. Distil. -39.8% ± 7.8% -2.2% ± 4.9%∗ -33.0% -42.3% -6.1% -70.6%

Pruning (0.2) -45.3% ± 4.9% +9.8% ± 1.9% 0.0% -4.3% -0.1% +0.4%
Pruning (0.4) +24.7% ± 19.8% +121.9% ± 13.1% 0.0% -66.6% -17.7% -42.4%
Pruning (0.6) +183.5% ± 41.9% +419.3% ± 29.5% 0.0% -93.4% -58.4% -93.0%

Quantization (float8) -20.3% ± 7.9% +14.0% ± 2.2% -42.0% +0.4% 0.0% +0.1%
Quantization (int8) -27.2% ± 6.7% +6.2% ± 2.3% -42.0% -0.3% 0.0% +0.0%
Quantization (int4) -17.9% ± 7.0% +29.1% ± 2.5% -51.9% -2.0% -0.1% +0.2%

(C) RQ3: Code Search

Compression Efficiency Effectiveness
Method CPU Inf. Time GPU Inf. Time Model Size MRR MRR@1 MRR@5

None 6.047 (sec) 0.010 (sec) 499 (MB) 0.329 0.242 0.310

Know. Distil. -84.7% ± 0.7% -29.2% ± 0.5% -48.7% -52.4% -57.7% -54.3%

Pruning (0.2) +5.5% ± 1.0% +11.1% ± 0.7% 0.0% -3.2% -3.4% -3.4%
Pruning (0.4) +16.1% ± 2.2% +6.4% ± 1.4% 0.0% -52.1% -57.3% -54.3%
Pruning (0.6) +3.1% ± 3.5%∗ +19.8% ± 3.3% 0.0% -99.6% -99.9% -99.8%

Quantization (float8) +34.2% ± 2.9% +113.2% ± 1.8% -51.4% -0.2% 0.0% -0.3%
Quantization (int8) +42.2% ± 3.8% +105.9% ± 1.1% -51.4% 0.0% -0.1% +0.1%
Quantization (int4) +61.8% ± 4.8% +209.6% ± 2.0% -59.3% -6.3% -7.6% -6.7%

strategy.3 For inference time, we also report the confidence interval for the change
using the Kalibera and Jones approach [313] (see Section 11.1.1 for details). Non-
statistically significant changes are marked with an asterisk (∗). For each considered
efficiency or effectiveness metric, the best values are highlighted in bold, while the
worst values are underlined. We also present scatter plots showing the trade-off
between effectiveness (y-axis) and efficiency (x-axis) for each RQ in Figure 11.2.

3For inference time, the first row reports the median of measurements across batches of the plain
CodeBERT model. The remaining rows show the percentage variations in the median inference time
provided by each compression strategy, computed using the Kalibera and Jones approach [313].

Chapter 11. Analyzing and Improving the Efficiency of LLMs 167

10203040
Inference Time (CPU) [sec.]

0.20

0.21

0.22

0.23

0.24

0.25

M
C

C

N

KD
P.2

P.4

P.6

QF8

QI4

QI8

0.0050.0100.0150.0200.0250.030
Inference Time (GPU) [sec.]

N

KD
P.2

P.4

P.6

QF8

QI4

QI8

200250300350400450500
Model Size [MB]

N

KD
P.2

P.4

P.6

QF8

QI4

QI8

None
Know. Distil.
Pruning
Quantization

(A) RQ1: Vulnerability Detection

100200300400500
Inference Time (CPU) [sec.]

0.2

0.4

0.6

0.8

S
ID

E

N

KD

P.2

P.4

P.6

QF8QI4QI8

20406080100120
Inference Time (GPU) [sec.]

N

KD

P.2

P.4

P.6

QF8QI4QI8

400500600700
Model Size [MB]

N

KD

P.2

P.4

P.6

QF8 QI4QI8

None
Know. Distil.
Pruning
Quantization

(B) RQ2: Code Summarization

246810
Inference Time (CPU) [sec.]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
R

R

N

KD

P.2

P.4

P.6

QF8
QI4

QI8

0.0100.0150.0200.0250.030
Inference Time (GPU) [sec.]

N

KD

P.2

P.4

P.6

QF8
QI4

QI8

200250300350400450500
Model Size [MB]

N

KD

P.2

P.4

P.6

QF8
QI4

QI8

None
Know. Distil.
Pruning
Quantization

(C) RQ3: Code Search

FIGURE 11.2: Trade-off between effectiveness (y-axis) and efficiency
(x-axis) metrics for each of the SE tasks.

RQ1 Results - Vulnerability Detection

We analyze the impact of compression strategies from various aspects: inference
time, model size, and vulnerability detection effectiveness. Additionally, we inves-
tigate the trade-offs involved among these metrics.

Inference Time. As reported in Table 11.3a, all compression strategies change the
inference time of the vulnerability detection model with statistical significance. How-
ever, the impact varies widely depending on the specific compression strategy and
the hardware environment. On the CPU, for example, the most aggressive configu-
ration of pruning (0.6) leads to the highest speed-up across all the strategies, with an
inference time reduction of −67.9% compared to the plain CodeBERT model. Inter-
estingly, less aggressive forms of pruning (0.2 and 0.4) lead to the opposite outcome,
with an inference slow-down of +15.5% and +18.8%, respectively. All pruning con-
figurations also negatively affect inference time in GPU environments, with slow-
downs of up to +9.1%. A possible explanation for this behavior could be identified
in the lower ability of GPU to handle sparse-matrix multiplications [271]. These
results of model pruning suggests that this strategy requires specific hardware and
configurations to improve the inference time of vulnerability detection models; how-
ever, when these conditions are met, the benefits can be substantial.

From Table 11.3a, we also observe that quantization negatively impacts inference
time in all configurations, resulting in the highest slowdowns across all compression

Chapter 11. Analyzing and Improving the Efficiency of LLMs 168

strategies in both CPU and GPU environments. int4 quantization, in particular,
causes the most significant slowdowns, with increases of +133.5% on the CPU and
+201.6% on the GPU. These negative results could be explained by the fact that
CPUs and GPUs are heavily optimized for full-precision floating-point operations
(e.g., 32-bit), hence quantized models may not fully take advantage of these opti-
mizations and experience an inference slowdown [67], [266], [320], [321].

Knowledge Distillation, on the other hand, consistently and significantly im-
proves inference time across both CPU and GPU environments. It ranks as the
second-best strategy (after Pruning 0.6) on the CPU, with a reduction of −39.8%
in inference time, and as the best strategy on the GPU, with a speed-up of −47.7%.

Model Size. As can be observed from Table 11.3a, all the compression strategies,
with the exception of pruning, reduce the size the vulnerability detection model.
int4 quantization provides the highest model’s size reduction (−59.3%), followed
by the other two quantization configurations (−51.4%). Those results align with
the expected quantization behaviour, where a lower bits’ precision implies a lower
model size. Knowledge Distillation reduces the original model size by almost half
(−48.8%). This result aligns with the smaller architecture of the distilled model com-
pared with the original fine-tuned CodeBERT model. In contrast, pruning does not
affect the model size. This behavior can be explained by the unstructured nature of
the pruning strategy employed, where pruning impacts only the weight values by
setting them to zero without modifying the network structure itself [266].

Effectiveness. Notably, we find that quantization has very limited impact on the
model’s effectiveness (see Table 11.3a). float8 quantization marginally changes the
effectiveness, in terms of Accuracy, F1-score, and MCC (0.0%, −1.1%, and +0.4%,
respectively). Similar results hold for int8 quantization, while int4 quantization
provides a slightly higher degradation, especially for F1 (−4.4%) and MCC (−8.5%).

Knowledge distillation performs slightly worse than quantization, particularly
in terms of MCC (−10.1%) and Accuracy (−2.2%). However, we observe an im-
provement in the F1-score (+3.1%). This means that the distilled model has a higher
tendency to predict vulnerabilities compared to the original fine-tuned CodeBERT
model, which can decrease the number of true negative instances (i.e., increase the
number of false positive instances). This leads to an improvement in recall, while
only marginally affecting precision, which overall positively impacts the F1-score.
Nonetheless, the reduction in MCC suggests a lower correlation between the pre-
dicted vulnerabilities and the actual ones.

Pruning has the most significant detrimental impact on vulnerability detection
effectiveness. All the pruning configurations considerably reduce model effective-
ness, with MCC changes ranging from −11.3% to −20.6%. Among all compression
strategies, Pruning 0.4 performs the worst across all three metrics, showing effective-
ness losses of −7.3%, −61%, and −20.6% for Accuracy, F1-score, and MCC, respec-
tively. Interestingly, Pruning 0.6 performs slightly better than Pruning 0.4, despite
prior research suggesting more severe effectiveness degradation with higher prun-
ing levels [68].

Trade-offs. Figure 11.2a shows the effectiveness-efficiency trade-off provided by
each compression strategy. For each sub-plot, the upper-right solutions are the best.
We use MCC as the effectiveness metric since, as explained in Section 11.1.1, it is the
most comprehensive metric for classification [239].

Chapter 11. Analyzing and Improving the Efficiency of LLMs 169

From the far-right subplot, we observe that quantization achieves the best model
size reduction while maintaining effectiveness levels comparable to the baseline.
However, as shown in the first two subplots, this gain comes at the cost of increased
inference time on both CPU and GPU. From Figure 11.2a, we observe that pruning is
consistently outperformed by other strategies across all efficiency and effectiveness
metrics. The only exception is Pruning 0.6, which offers the fastest inference time
but at the expense of a comparatively low effectiveness. Knowledge distillation is,
on the other hand, the only compression strategy that improves efficiency across all
dimensions (i.e., CPU and GPU inference time, and model size). At the same time,
this strategy results in a comparatively moderate effectiveness degradation–greater
than quantization but less than pruning. Overall, this makes knowledge distilla-
tion the strategy that offers the most balanced trade-off between efficiency gains and
effectiveness degradation.

Answer to RQ1: Quantization is the most effective strategy for reducing memory
size in vulnerability detection models (up to −59.3%), with minimal impact on
model effectiveness (−8.5% MCC in the worst case). However, it can significantly
increase inference time, by as much as +201.6%. Pruning, on the other hand,
shows no efficiency gains, with the exception of the 0.6 configuration that results
in notable speed-up on CPU (up to −67.9%), but at the cost of a −18.2% effec-
tiveness degradation in MCC. Finally, Knowledge Distillation improves both in-
ference time (up to −47.7%) and model size (up to −48.8%), while moderately im-
pacting vulnerability detection effectiveness, with a reduction of −10.1% in MCC.

RQ2 Results - Code Summarization

Inference Time. As shown in Table 11.3b, Pruning 0.2 is the most effective ap-
proach for reducing inference time on the CPU, achieving a −45.3% reduction com-
pared to the plain CodeBERT model. Counter intuitively, we observe a negative cor-
relation between the percentage of weights pruned and the inference time reduction.
For example, Pruning 0.4 performs worse than Pruning 0.2, increasing inference time
by +24.7%, while Pruning 0.6 shows the worst behavior, increasing inference time
by +183.5% on the CPU. On the GPU, we observe an even more pronounced wors-
ening trend, as inference times increase by +9.8%, +121%, and +419.3% for Pruning
0.2, 0.4, and 0.6, respectively. A possible explanation for this behavior could be the
lower hardware’s ability to handle sparse matrix multiplications [322]. Since gener-
ation tasks require multiple network forward steps, a higher sparsity of the weights
could increase the overall inference time.

Quantization strategies can all reduce the inference time on the CPU, with int8
quantization being the best configuration (−27.2%). This behavior differs from what
we observed for vulnerability detection and could be explained by the higher com-
plexity of the underlying task, which may benefit more from reduced weight preci-
sion [67]. On the other hand, on the GPU, quantized models are overall slower than
the plain CodeBERT model, with inference time slow-downs ranging from +6.2% to
+29.1%.

Knowledge Distillation is the only strategy capable of reducing the inference
time of code summarization models across both CPU and GPU environments. On
the CPU, it is the second-best compression strategy for inference time reduction
(−39.8%). On the GPU, it is the only strategy to achieve an inference time reduction,
with a decrease of (−2.2%). However, this reduction is not statistically significant,

Chapter 11. Analyzing and Improving the Efficiency of LLMs 170

as the confidence interval for the relative change includes zero (see Section 11.1.1 for
details).

Model Size. From Table 11.3b, we observe how, like in vulnerability detection,
int4 quantization is the best strategy for reducing the model’s size (−51.9%), fol-
lowed by the other two quantization configurations. Again, these results align with
the expected quantization behavior, where the lower the precision, the lower the
size. Knowledge Distillation can also reduce the model size (by −33%), while the
adopted pruning strategies confirm that they do not lead to any change.

Effectiveness. From Table 11.3c we observe that all quantization strategies provide
only marginal change in the model’s effectiveness, with float8 and int8 quantiza-
tion having almost comparable metrics to the baseline, and int4 quantization show-
ing limited degradations of −2%, −0.1%, −0.2% for Bleu, BERTScore and SIDE, re-
spectively.

For pruning, we observe that the impact grows as pruning becomes more ag-
gressive. Specifically, Pruning 0.2 shows marginal impact, with a slight degradation
of −4.3% in summary-summary text similarity (BLEU). On the other hand, Pruning
0.4 and 0.6 substantially reduce the model’s effectiveness across all dimensions. For
instance, in terms of summary-code semantic similarity (SIDE), Pruning 0.4 and 0.6
lead to effectiveness decreases of −42.4% and −93%, respectively. This behavior is
in line with previous research showing how the effectiveness of a BERT model starts
to decrease if the amount of pruned weights is ≥ 40% [68].

Knowledge Distillation also shows a significant impact, particularly in terms of
summary-summary text similarity (−42.3% in Bleu) and summary-code semantic
similarity (−70.6% in SIDE). This behavior is consistent with previous studies, which
highlight that distilled models are less effective for tasks beyond classification [267].

Trade-offs. Figure 11.2b illustrates the trade-off between effectiveness and effi-
ciency. We use SIDE as the effectiveness metric, as it is specifically designed for
code summarization tasks [224]. We observe that Knowledge Distillation overall
improves the inference time and size of the model, but it significantly degrades ef-
fectiveness. In contrast, quantization generally performs well across all efficiency
metrics, with only a slight slow-down in inference time on the GPU. Moreover, this
strategy has only a marginal impact on the model’s effectiveness, with values com-
parable with the baseline. As such, quantization appears to offer the best balance
between efficiency and effectiveness as a compression strategy. Pruned models are
generally outperformed by other compressed models in terms of both efficiency and
effectiveness. The only exception is Pruning 0.2, which provides the best trade-off
between inference time and effectiveness on the CPU. However, using pruning does
not improve model size.

Chapter 11. Analyzing and Improving the Efficiency of LLMs 171

Answer to RQ2: Quantization strategies offer the best efficiency-effectiveness
trade-off among compression techniques, with inference time speed-up of up to
−27.2%, model size reduction of up to −51.9%, and minimal effectiveness degra-
dation of up to −0.2% in SIDE. Pruning generally underperforms compared to
other strategies, but under specific configurations, such as Pruning 0.2, it achieves
the best inference time improvements on the CPU (−45.3%). While Knowledge
Distillation improves all efficiency metrics (with up to −39.8% in inference time
and −33% in model size), it causes significant losses in effectiveness, with reduc-
tions of −70.6% in SIDE.

RQ3 Results - Code Search

Inference Time. Table 11.3c reports how Knowledge Distillation is the strategy
that better reduces the inference time on both CPU and GPU, with improvements of
−84.7% and −29.2%, respectively. We observe that all other compression strategies
have a negative impact on inference time. Pruning slows down inference on both
CPU and GPU, with an increase in inference time ranging from +3.1% to +19.8%.
A possible explanation for this behavior with pruning could be the complexity of
the code search task, which typically requires multiple comparisons between a code
comment and the code snippets. In that, the sparsity of matrices could increase in-
ference time, especially if the hardware is not well-optimized for handling sparse
matrices [271]. Similarly to vulnerability detection, we observe that quantization
consistently increases the inference time of code search on both CPU and GPU. The
magnitude of the increase is lower on CPU, ranging from +34.2% to +61.8%, and
higher on GPU, with variations from +113.2% to +209.6%. The negative behavior of
quantization strategies could be (once again) explained by the lack of optimization
in CPU and GPU kernels for low-precision bit operations [67], [266], [320], [321].

Model Size. Since the model used for this task is the same as the one used for vul-
nerability detection (i.e., CodeBERT), the results regarding the model size are iden-
tical. Hence, int4 quantization emerges as the best strategy, while the unstructured
nature of pruning does not imply any change.

Effectiveness. Table 11.3c shows how int8 and float8 quantization provide no
significant change compared with the baseline. A slightly higher degradation is
instead observed with int4 quantization (−6.3% in MRR). All pruning strategies
provide a degradation in the model’s effectiveness, with reductions in MRR ranging
from −3.2% to −99.6%. We observe a correlation between the increase in effective-
ness loss and the percentage of pruned weights. Pruning 0.6 strategy proves to be
the worst compression strategy, with an MRR loss of −99.6%. Finally, we also ob-
serve a significant degradation in effectiveness for Knowledge Distillation, with a
−52.1% loss in MRR. This result is consistent with previous research, which has
shown that distilled models often exhibit lower effectiveness on tasks different from
classification [267].

Trade-offs. Figure 11.2c shows the effectiveness-efficiency trade-off. We adopt the
general MRR score as the effectiveness metric. We observe that quantization strate-
gies are preferred to reduce the model size while not impacting its effectiveness;
however, they negatively influence the inference time. Knowledge Distillation achieves
significant reductions in both inference time and model size, but it also drastically

Chapter 11. Analyzing and Improving the Efficiency of LLMs 172

reduces the model’s effectiveness, with a loss of −52.1% in MRR. Finally, pruning
strategies do not achieve positive results in any of the efficiency and effectiveness
metrics analyzed.

Answer to RQ3: Quantization strategies drastically reduce the size of code search
models (up to −59.3%) with only a marginal impact on effectiveness (up to −6.3%
in MRR). However, they can significantly slow down inference time, with an in-
crease of up to +61.8% on CPU and +209.6% on GPU. Knowledge Distillation re-
duces both model size (−48.7%) and inference time (−84.7% on CPU and −29.2%
on GPU), but it comes at the cost of a considerable loss in effectiveness (−52.4%
in MRR). Pruning, however, does not show improvements in any of the efficiency
metrics analyzed.

11.1.3 Discussion

In the following, we discuss the overall behaviour of the analysed compression
strategies and report insights for practitioners and researchers derived from our em-
pirical evaluation.

Performance of LLM Compression Strategies

Knowledge Distillation. We found that Knowledge Distillation is the only com-
pression strategy capable of improving both inference time and model size across all
the software engineering tasks we considered. However, this strategy can lead to a
significant loss in effectiveness. This loss in effectiveness is particularly pronounced
in tasks like code search and summarization, while it is milder in vulnerability de-
tection. These findings align with previous research, which suggests that distilled
models tend to be less effective for tasks other than classification [267]. Indeed, to
date, knowledge distillation has predominantly been applied to code classification
tasks, such as vulnerability detection and clone detection [265], [266].

Model Quantization. We found that quantization drastically reduces the size of
models across all tasks while maintaining relatively high effectiveness. However,
this improvement often comes at the cost of increased inference time. On GPU en-
vironments, quantization can double or even triple the inference time for tasks like
vulnerability detection and code search. In contrast, the slowdown in inference time
is much less pronounced for the code summarization task. Interestingly, in CPU
environments, quantization can even improve the inference time for code summa-
rization. However, for vulnerability detection and code search, it still introduces
notable slowdowns. Based on these findings, we hypothesize that quantization per-
forms better in terms of efficiency when the task is complex—requiring multiple
forward passes through the model—such as in code generation tasks. These results
align with previous studies on the application of quantization for code generation
tasks [274].

Model Pruning. We found that while pruning offers limited overall benefits in
terms of efficiency, it can lead to significant speed-ups in inference time under spe-
cific combinations of configurations and environments. For instance, Pruning 0.2
provides the highest inference speed-up for code summarization on CPU among all
compression strategies, with only a marginal reduction in effectiveness. Similarly,

Chapter 11. Analyzing and Improving the Efficiency of LLMs 173

in the vulnerability detection task, Pruning 0.6 proves to be the most effective strat-
egy for improving inference time on CPU, though it comes with a moderate loss in
effectiveness. These findings suggest that, when properly configured, pruning can
deliver substantial inference speed-ups, particularly in CPU environments.

Insights

Insights for Practitioners. Our results indicate that the impact of different com-
pression strategies can vary significantly depending on the SE task and the underly-
ing execution environment, often involving important efficiency-effectiveness trade-
offs. Hence, practitioners should carefully select the compression strategy based on
their requirements and the underlying task as follows:

• If the practitioner’s priority is to improve both inference time and model size,
regardless of the task or underlying execution environment, Knowledge Dis-
tillation is the preferred choice. Indeed, it is the only compression strategy that
delivers improvements across all efficiency aspects in both CPU and GPU en-
vironments. However, practitioners should be aware of potential negative im-
pacts on effectiveness, particularly in tasks other than code classification (e.g.,
code summarization and code search). Additionally, it is important to note
that Knowledge Distillation is the only compression strategy that requires re-
training a model from scratch, which may be undesirable if practitioners lack
sufficient computational resources.

• If the priority is to reduce model size without significantly degrading effective-
ness, quantization is the natural choice, regardless of the SE task. Nevertheless,
practitioners should be mindful of the potential side effects on inference time,
which can vary greatly depending on the task and environment, and often re-
sult in significant slowdowns. In some specific cases, however, quantization
can even improve inference time, such as code summarization on CPU.

• If the practitioner’s goal is to reduce inference time in GPU environments, the
only viable choice is Knowledge Distillation. However, as previously men-
tioned, this approach can drastically affect model effectiveness, particularly
for tasks like code summarization and code search.

• If the priority is to improve inference time on CPU, the practitioner could once
again consider Knowledge Distillation. They may also consider pruning, espe-
cially for tasks such as vulnerability detection and code summarization. How-
ever, pruning must be carefully configured to provide benefits. For instance,
a less aggressive form of pruning (0.2) proved beneficial in reducing inference
time for vulnerability detection, while a more aggressive form (0.6) resulted
in the highest inference speed-up for code summarization. For code search,
Knowledge Distillation remains the only viable option for reducing inference
time on CPU, though it drastically reduces the model’s effectiveness. In fact,
we did not find any compression strategy that improves inference time for
code search without significant losses in effectiveness.

Insights for Researchers. Our results show that the behaviour of compression
strategies greatly varies depending on the context. However, when these strategies
are carefully selected for the underlying task and environment, they can significantly
enhance efficiency aspects with a marginal impact on effectiveness. For instance,

Chapter 11. Analyzing and Improving the Efficiency of LLMs 174

we found that specific quantization configurations can enhance both CPU inference
time and model size without influencing the effectiveness of code summarization.
These findings highlight the potential for developing approaches that automatically
select the optimal compression strategy based on the underlying task, execution en-
vironment, and efficiency/effectiveness requirements. Moreover, we observed that
the efficacy of compression strategies can highly depend on their specific configura-
tion. This behavior is particularly evident in the pruning strategy, where the amount
of pruned weights significantly influence its impact on inference time. We encour-
age future research aimed at developing approaches to automatically identify the
optimal compression configuration (e.g., amount of weights to prune), based on the
SE task and execution environment.

11.1.4 Threats to Validity

Internal Validity: Execution time measurements are typically subject to variabil-
ity, which can hinder rigorous evaluation [323]. To address this issue, we followed
best practices from performance engineering to increase the reliability of our eval-
uation [308]–[313] (see Section 11.1.1). Furthermore, the outcomes may be influ-
enced by potential errors in the implementation of the baseline models and compres-
sion strategies. To address this concern, we utilized a widely adopted benchmark
(CodeXGLUE) for training and testing the baseline models and employed compres-
sion strategies implementations from widely used and maintained libraries.

Construct Validity: As explained in Section 11.1.1, we employed multiple met-
rics for each task to assess a model’s effectiveness. This has been done to account for
possible threats concerning adopting specific metrics (like Accuracy [239] or Bleu
[318]). Concerning efficiency metrics, we relied on standard approaches and statis-
tics to measure inference time and model size.

External Validity: The major threats of our work concern its generalizability. The
results obtained are limited to the models and tasks analysed and the environment
in which the experiments were run. In addition, the results concerning Knowledge
Distillation are specific to the DistilBERT LLM and may not hold for other distilled
models. Future work can extend our analysis with other LMs and code-related tasks
and by analysing other Knowledge Distillation techniques. To this end we strove
to describe the methodology we followed as clearly as possible and have made our
code and scripts publicly available [69].

11.2 Improving Inference Time and Image Quality of Image
Generation Models

As highlighted in Section 8.1, text-to-image generation models have garnered signif-
icant attention due to their potential to bridge the gap between textual descriptions
and visual representations [324]. However, achieving high quality of the generated
images involves fine-tuning various aspects of a generative model, such as the num-
ber of inference steps or positive and negative prompts [277]. At the same time, like
all LLMs, image generation models are energy and resource-demanding and present
a significant inference time [16], [325].

Berger et al. [277] proposed a search-based approach, dubbed StableYolo, to opti-
mize the image quality of Stable Diffusion by assessing image quality using the Yolo
pre-trained model for image-captioning[326]. However, their approach does not

Chapter 11. Analyzing and Improving the Efficiency of LLMs 175

take into account the issue of inference time, which is a cornerstone for both ensur-
ing user experience and minimizing the energy consumption of generative models.
Moreover, the compression strategies evaluated in Section 11.1 have been shown to
expose efficiency and effectiveness trade-offs and may behave inconsistently based
on the underlying task.

To address this gap, we extend the work of Berger et al. by presenting GreenSta-
bleYolo [72], a novel approach that addresses the challenge of optimizing the trade-
off between inference time and image quality using a search-based multi-objective
optimization method, namely Non-dominated Sorting Genetic Algorithm (NSGA-
II) [71]. More in detail, GreenStableYolo searches for the optimal configuration of
hyperparameters and prompt structure to reduce the inference time while maintain-
ing a high quality of the generated images. Being a post-processing method, it can
be applied to a black-box model without altering its internal architecture. Thus, it
can be employed during the model deployment phase to reduce the image generation
time.

We provide initial empirical evidence that by using GreenStableYolo, Stable Dif-
fusion models achieve a satisfactory equilibrium between inference time and image
quality, making it suitable for real-world applications where both factors play a cru-
cial role.

11.2.1 Methodology

GreenStableYolo is a novel multi-objective search-based approach that, given a text
prompt for image generation, searches for the optimal parameters that can strike a
trade-off between:

1. Inference time, which is measured by the GPU time taken for the execution of
the StableDiffusionPipeline;

2. Image quality, which is determined by performing object recognition with Yolo,
then selecting objects that match the input prompt, and computing their aver-
age probabilities [277].

NSGA-II Optimization Algorithm

To simultaneously enhance image quality and reduce inference time, we leverage
NSGA-II, a well-known and efficient multi-objective evolutionary algorithm [327],
[328]. Specifically, NSGA-II works as follows:

1. Initialize a population with N individuals;

2. Perform crossover and mutation operations, generating an offspring popula-
tion denoted as Po;

3. Reassemble the parent population Pt−1 and Po into a temporary population
with the size of 2N, and formulate individuals into i non-inferior frontier through
fast non-dominating sorting;

4. Select N individuals from the temporary population to form the next popula-
tion for the tth iteration, denoted as Pt.

5. Repeat steps (2)-(4) until the termination condition is met;

6. The algorithm ends up and returns the current Pareto-Optimal set.

Chapter 11. Analyzing and Improving the Efficiency of LLMs 176

Selected Parameters

To make a straightforward comparison with StableYolo, we adopt the same settings
as used by Berger et al. [277]. Specifically, the following parameters and prompts are
tuned and searched with NSGA-II:

• Inference steps (1 to 100): the AI’s image generation iterations;

• Guidance scale (1 to 20): the impact of the prompt on image generation;

• Guidance rescale (0 to 1): rescales the guidance factor to prevent over-fitting;

• Seed (1 to 512): randomization seed;

• Positive prompt: used to describe images and improve their details, e.g., “pho-
tograph”, “color”, and “ultra real”;

• Negative prompt: avoided description during image generation, e.g., “sketch”,
“cropped”, and “low quality”.

11.2.2 Evaluation

To evaluate our proposal, we address the following research questions (RQs):

RQ1: To what extent can GreenStableYolo improve image quality and inference time com-
pared with StableYolo?

RQ2: How do parameters/prompts of Stable Diffusion influence the inference time for image
generation?

RQ3: How do parameters/prompts of Stable Diffusion influence the quality of the generated
images?

Experimental Setup

To ensure a fair evaluation of the optimization effectiveness, we employed the same
hyperparameter setup as StableYolo for NSGA-II, e.g., the population size was set to
25, the number of generations was set to 50, and both the mutation rate and crossover
rate were set to 0.2. We selected the weights of 0.001 for image quality and -1000 for
inference time based on empirical investigation of different weight combinations. In
addition, we used Stable Diffusion version v2 and Yolo version v8. To assess vari-
ability, we evaluated each model 15 times using different random seeds, focusing
solely on the prompt “two people and a bus” due to time constraints. Any future
studies can explore additional prompts. All experiments were conducted on a vir-
tual machine hosted on Google Colaboratory, with an NVIDIA Tesla T4 GPU with
16 GB of RAM.

RQ1 Results

Figure 11.3 presents the performance comparisons between GreenStableYolo and
StableYolo. Specifically, Figure 11.3a reveals that GreenStableYolo achieves an aver-
age inference time of 9.4 seconds with an interquartile range (IQR) of 4.7 seconds.
Conversely, StableYolo exhibits an average inference time of 25.0 seconds, which is
1.66 times higher than GreenStableYolo, with an IQR of 9.1 seconds. That is, Green-
StableYolo generates images much faster.

Chapter 11. Analyzing and Improving the Efficiency of LLMs 177

GreenStableYolo StableYolo
5000

10000

15000

20000

25000

30000

35000

40000

In
fe

re
nc

e
Ti

m
e

(m
s)

(A) Inference time

GreenStableYolo StableYolo
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85

Im
ag

e
Qu

al
ity

(B) Yolo quality measure

GreenStableYolo StableYolo

5000

10000

15000

20000

25000

30000

35000

Hy
pe

rv
ol

um
e

(C) Hypervolume

FIGURE 11.3: Comparison of GreenStableYolo and StableYolo on 15
independent runs

This improvement in inference time comes at a slight cost to image quality. As
illustrated in Figure 11.3b, GreenStableYolo experiences approximately an average
degradation of 0.18 points in image quality. We also compute the hypervolume [329]
for both models for a more comprehensive comparison4. Figure 11.3c presents the
hypervolume values with the reference point set as (1, 50000), where GreenStableY-
olo achieves an average hypervolume of 29074.11, surpassing StableYolo’s score of
4642.17 by 5.26 times.

Answer to RQ1: GreenStableYolo significantly improves the StableYolo baseline
in this two-objective optimization problem for text-to-image generation.

Results of RQ2 and RQ3

To investigate RQs2–3, we followed previous work [330] and built two Random For-
est regression models using scikit-learn. The features of these models include the
number of iteration steps, guidance scale, guidance rescale, positive prompts, and
negative prompts (excluding the random seed). The target variables are inference
time and image quality score, respectively. We use the RandomizedSearchCV func-
tion from scikit-learn to find the optimal hyperparameters during model training.
The feature_importances_ function is then used to compute the importance of each

4Hypervolume is a fundamental metric used in multi-objective optimization problems that indi-
cates the dominance of a solution in the objective space.

Chapter 11. Analyzing and Improving the Efficiency of LLMs 178

Inference
steps

Guidance
scale

Guidance
rescale

Positive
prompts

Negative
prompts

0.0

0.1

0.2

0.3

0.4
0.43

0.08

0.25
0.20

0.04

(A) RQ2: MDI w.r.t. inference time

Inference
steps

Guidance
scale

Guidance
rescale

Positive
prompts

Negative
prompts

0.0

0.1

0.2

0.3

0.22

0.08

0.34

0.24

0.12

(B) RQ3: MDI w.r.t. image quality

FIGURE 11.4: Parameters and prompts importance based on the
mean decrease in impurity

parameter and prompt based on the Mean Decrease Impurity (MDI), a.k.a. as Gini
importance. To ensure reliability, we repeat this process 10 times.

Figures 11.4a and 11.4b present the calculated importance of parameters and
prompts based on the mean decrease in impurity, with respect to inference time and
image quality scores, respectively. As shown in Figure 11.4a, the number of infer-
ence steps emerges as a significant factor affecting inference time. This is expected, as
more steps involve more computations, thereby resulting in higher inference time.
Meanwhile, for image quality (Figure 11.4b), parameters like guidance rescale and
positive prompts play a relatively more critical role.

Answers to RQ2 and RQ3: The number of inference steps is the most crucial pa-
rameter affecting inference time, while guidance rescale and positive prompts are
more critical for image quality.

The results of our evaluation highlight the importance of identifying optimal
parameter combinations during model inference to balance computational efficiency
and output quality.

11.2.3 Threats to Validity

The limited exploration of prompts, the randomness in the optimization process,
and the specific configuration for NSGA-II may introduce internal threats. Besides,

Chapter 11. Analyzing and Improving the Efficiency of LLMs 179

external threats may include the choice of the GenAI model, the noise when measur-
ing the inference time, and the evaluation of image quality based on object recogni-
tion using Yolo.

11.3 Conclusion

In this chapter, we addressed the issue of the efficiency of learning-based systems
employing LLMs. We first performed an empirical evaluation of the impact that the
adoption of three LLM compression strategies (i.e., Knowledge Distillation, Quanti-
zation, and Pruning) could have on the inference time, memory size, and effective-
ness of models fine-tuned for three widely adopted SE tasks – vulnerability predic-
tion, code summarization, and code search. Results show how each strategy pro-
vides some trade-offs among the three analyzed dimensions and how the proper
compression method should be chosen based on the underlying task and the practi-
tioner’s priorities.

Following this evaluation, we introduced GreenStableYolo, the first approach
leveraging NSGA-II to strike an optimal trade-off between inference time and image
quality for Stable Diffusion models. Experimental comparisons with the StableYolo
baseline demonstrate that GreenStableYolo achieves significantly reduced inference
time while maintaining a relatively high image quality.

180

Part III

Conclusion

181

Chapter 12

Conclusion

The quality-based development of learning-based systems is a complex task, and
different challenges arise in the various phases of the development pipeline. In
this thesis, we proposed a set of contributions to address some of the most peculiar
challenges by easing and standardizing the quality-based development of learning-
based systems. In particular, we focused on the fairness and effectiveness of learning-
based systems and presented a set of contributions spanning through almost all the
steps of a learning-based system development workflow.

In the following, we summarize the different contributions by placing them in
the various phases of the workflow depicted in Figure 1.1:

• Model Requirements. Concerning the model requirement phase, the first contri-
bution relates to introducing two low-code approaches, MANILA and MOD-
NESS, to assist data scientists and researchers in developing fair learning-
based systems. Both approaches contribute to different phases of a learning-
based system development workflow. In this specific phase, these approaches
can assist data scientists and domain experts in specifying fairness analyses at
a high level and selecting compatible combinations of machine learning mod-
els and fairness-enhancing methods for evaluation. A second contribution re-
lates to an initial exploration of approaches to assist data scientists in selecting
efficient ML models from a training time perspective. In particular, we ana-
lyzed the FPTC approach and highlighted its strengths and weaknesses.

• Feature Engineering. For the feauture engineering phase, we presented the De-
biaser for Multiple Variables (DEMV). DEMV is a pre-processing algorithm able
to mitigate the bias of a dataset both in binary and multi-class classification
tasks. In addition, we presented an empirical study on the effectiveness of
dataset’s bias symptoms to early predict algorithmic bias before training an ML
model.

• Model Training. By automatically generating the Python code to train the
selected ML models and fairness-enhancing method combinations, MANILA
supports data scientists also in the model training phase. In addition, MANILA
can automatically execute the code in the web infrastructure.

• Model Evaluation. Both MANILA and MODNESS assist data scientists in the
model evaluation phase by automatically computing the metrics specified dur-
ing the model requirements phase. Additionally, we performed a first investi-
gation on how the LLM fairness assessment process is performed in GitHub
projects. Surprisingly, we did not observe any project employing LLMs and
fairness assessment libraries together. This result raises concerns about the
fairness assessment of LLMs.

Chapter 12. Conclusion 182

• Model Deployment. We performed an extensive empirical study on the im-
pact of LLM compression strategies on the efficiency and effectiveness of LLMs
fine-tuned for SE tasks. Following this empirical evaluation, we provided a set
of recommendations for practitioners and researchers to select the best com-
pression strategy to employ during the model deployment phase. In addition,
we presented a novel search-based approach named GreenStableYolo. This
method searches for the best set of hyperparameters and prompt structures to
improve the efficiency of text-to-image generation models while keeping the
generated images of high quality. Thus, it can be employed during model de-
ployment to identify the best model setting.

• Model Monitoring. We presented a comprehensive analysis of the gender
and ethnicity bias exposed by Stable Diffusion text-to-image generation models
when generating images for SE tasks. The results raise serious concerns about
the bias exposed by those models. Moreover, we provide practitioners and re-
searchers with recommendations to mitigate the bias exposed by those models
when using them.

Although the contributions cover many phases of the pipeline, challenges re-
main. In particular, while approaches like MANILA, MODNESS, and the identified
bias symptoms are presented separately, they can be integrated to automate and
enhance the development of fair learning-based systems. Additionally, we envision
extending the early detection of bias to the very beginning of the learning-based sys-
tem development workflow, specifically during the model requirements phase. Fi-
nally, the empirical study on the bias exposed by image-generation models opens the
field to additional research needed to mitigate the bias embedded in these models.
At the same time, the empirical study on LLM compression methods underscores
the importance of assisting practitioners in choosing the most suitable compression
strategy according to the specific task and model architecture. In the following sec-
tion, we detail future work proposed to address those current limitations.

12.1 Future Work

Future work of this thesis lies in additional contributions to the development of fair
and efficient learning-based systems. More in detail:

• Automate the development of fair learning-based systems. As highlighted in
Chapters 5 and 6, MANILA and MODNESS could be integrated in the future to
guide data scientists through the development of fair learning-based systems,
allowing a high degree of expressiveness. More in detail, we plan to extend the
MODNESS metamodel by including the features and constraints specified in
MANILA’s ExtFM. Moreover, we plan to integrate the study on bias symptoms
to suggest possible variables leading to high bias in the system. Furthermore,
we will explore methods for early detection of ML model training times to sup-
port the constraint of training efficiency. Eventually, we envision a web-based
application providing a low-code infrastructure to: i) provide a high-level def-
inition of bias for a given domain; ii) highlighting variables in the dataset pos-
sibly leading to high bias in the system; iii) guide them in the selection of ML
models and fairness-enhancing methods to benchmark; iv) assist them in se-
lecting fairness metrics more compliant with the high-level definition of bias;
v) generate the complete implementation of the fairness benchmarking work-
flow.

Chapter 12. Conclusion 183

• Early bias detection and mitigation from model requirements. To addition-
ally support data scientists in developing fair learning-based systems, we en-
vision extending the abovementioned framework to automatically detect bias
issues starting from model requirements. In particular, similarly to previous
work [119], [331], we can rely on Natural Language Processing or AI-based ap-
proaches to extract all the topics related to fairness assessment from a software
requirement (like sensitive variables, positive outcomes, or privileged and un-
privileged groups). These topics can be employed to assist domain experts in
the high-level definition of bias. In particular, we plan to create a repository
of high-level bias definition templates using the MODNESS DSL. These tem-
plates will be tagged with specific fairness topics. Next, based on the fairness
topics extracted from a fairness requirement, this repository will be queried to
select more suitable templates for a given requirement.

• Automatic identification of LLM compression strategies. The effectiveness of
LLM compression strategies, as highlighted in Section 11.1, is closely related
to the specific task and the model architecture used. Therefore, we propose
an automated approach to identify the compression strategy that strikes the
best balance between high prediction accuracy, reduced inference time, and
smaller model size. More in particular, we envision a search-based approach
that explores different compression method configurations to identify the opti-
mal one. The search-based algorithm will be similar to a search-based strategy
proposed in a previous work that explores different ML model configurations
to create the best ensemble model for defect prediction [332].

• Energy and fairness improvement of Text-To-Image generation models. As
shown in Section 8.1, Stable Diffusion models exhibit a strong gender and eth-
nicity bias when generating figures for specific tasks. Thus, we plan to extend
GreenStableYolo to improve the fairness of Stable Diffusion models by work-
ing on its hyperparameters and prompt structure. In detail, we will include
in the fitness function the gender and ethnicity bias metrics from Chapter 8 to
guide the search toward solutions that not only minimize inference time but
also reduce bias related to gender and ethnicity, all while ensuring the qual-
ity of the generated images remains high. Additionally, following the same
approach, we plan to extend the efficiency improvement by also optimizing
CPU and GPU consumption of Stable Diffusion models relying on dedicated
libraries for its measurement, like Codecarbon1.

• Trade-off analysis on fairness and efficiency. Finally, while the trade-off be-
tween fairness and prediction’s effectiveness has been widely studied [34],
[35], [80], there is still a lack of research focusing on the trade-off between
fairness and efficiency in learning-based systems. To address this gap, we
plan to thoroughly investigate the trade-offs between fairness and efficiency in
learning-based systems. Specifically, we aim to explore how fairness-enhancing
methods impact the efficiency of learning-based systems, particularly regard-
ing training and inference times, as well as energy consumption. From this
analysis, we aim to propose a search-based strategy to automatically identify
the optimal combination of the ML model and fairness-enhancing method able
to achieve the best fairness, efficiency and effectiveness trade-offs.

1https://codecarbon.io/

https://codecarbon.io/

184

Appendix A

Additional DEMV Evaluations

A.1 Detailed results of generative strategies’ comparison

In the following, we report the detailed results of the evaluation of DEMV’s gen-
erative strategies. For each dataset and for each method, we report the mean and
standard deviation of all metrics. In addition, we report the mean and standard de-
viation of the H-Mean computed from the obtained values. Finally, we also report
the overall means and standard deviations of all the values obtained by each method
in each experiment. For each dataset, we highlight in boldface the best value of each
metric

In particular, table A.1 shows the results for binary datasets, while table A.2 de-
scribes the results for multi-class datasets.

A.2 Detailed results for binary classification

In the following, we report the charts and the detailed results for binary classifica-
tion. Concerning the experiment with one sensitive variable we report the mean of
the measures of both experiments taking each sensitive variable singularly.

Figure A.1 reports the means and standard deviations obtained in all three ex-
periments. As noticed above, EG is the method performing better when one or two
sensitive variables are involved, while it is not able to manage groups identified by
three sensitive variables.

Tables A.3, A.4, and A.5 reports the detailed results for each dataset. For each
dataset, we highlight in boldface the best value of each metric whose differences are
statistically significant. As mentioned above, we like to remark that when dealing

TABLE A.1: Evaluation results of generative strategies for binary
datasets

Data Strategy SP AO ZO Loss DI Acc H-Mean

Adult
DEMV Uniform 0.126 ± 0.03 0.26 ± 0.124 0.144 ± 0.015 0.373 ± 0.137 0.834 ± 0.005 0.635 ± 0.117
DEMV SMOTE 0.138 ± 0.014 0.22 ± 0.149 0.153 ± 0.011 0.242 ± 0.075 0.834 ± 0.005 0.543 ± 0.078
DEMV ADASYN 0.126 ± 0.03 0.259 ± 0.123 0.145 ± 0.015 0.374 ± 0.137 0.834 ± 0.005 0.636 ± 0.117

Compas
DEMV Uniform 0.161 ± 0.063 0.29 ± 0.202 0.124 ± 0.043 0.773 ± 0.08 0.664 ± 0.016 0.75 ± 0.099
DEMV SMOTE 0.15 ± 0.043 0.266 ± 0.154 0.133 ± 0.051 0.79 ± 0.056 0.665 ± 0.016 0.767 ± 0.061
DEMV ADASYN 0.16 ± 0.063 0.288 ± 0.203 0.124 ± 0.043 0.774 ± 0.081 0.664 ± 0.016 0.75 ± 0.099

German
DEMV Uniform 0.18 ± 0.134 0.644 ± 0.342 0.278 ± 0.119 0.772 ± 0.163 0.748 ± 0.038 0.616 ± 0.157
DEMV SMOTE 0.183 ± 0.138 0.625 ± 0.381 0.276 ± 0.121 0.771 ± 0.172 0.748 ± 0.039 0.636 ± 0.162
DEMV ADASYN 0.181 ± 0.134 0.649 ± 0.353 0.276 ± 0.12 0.771 ± 0.163 0.747 ± 0.039 0.623 ± 0.146

Mean
DEMV Uniform 0.156 ± 0.027 0.398 ± 0.214 0.182 ± 0.084 0.639 ± 0.231 0.749 ± 0.085 0.667 ± 0.073
DEMV SMOTE 0.157 ± 0.023 0.37 ± 0.222 0.187 ± 0.077 0.601 ± 0.311 0.749 ± 0.085 0.649 ± 0.113
DEMV ADASYN 0.156 ± 0.028 0.399 ± 0.217 0.182 ± 0.082 0.64 ± 0.23 0.748 ± 0.085 0.67 ± 0.07

Appendix A. Additional DEMV Evaluations 185

TABLE A.2: Evaluation results of generative strategies for multi-class
datasets

Data Strategy SP AO ZO Loss DI Acc H-Mean

CMC
DEMV Uniform 0.056 ± 0.029 0.206 ± 0.191 0.233 ± 0.102 0.663 ± 0.157 0.512 ± 0.038 0.694 ± 0.074
DEMV SMOTE 0.048 ± 0.033 0.195 ± 0.138 0.273 ± 0.098 0.722 ± 0.138 0.51 ± 0.038 0.704 ± 0.051
DEMV ADASYN 0.054 ± 0.03 0.213 ± 0.172 0.255 ± 0.101 0.68 ± 0.168 0.514 ± 0.038 0.693 ± 0.07

Crime
DEMV Uniform 0.202 ± 0.049 0.32 ± 0.138 0.164 ± 0.044 0.365 ± 0.143 0.441 ± 0.028 0.542 ± 0.076
DEMV SMOTE 0.242 ± 0.048 0.309 ± 0.146 0.181 ± 0.039 0.292 ± 0.124 0.456 ± 0.03 0.501 ± 0.08
DEMV ADASYN 0.215 ± 0.051 0.316 ± 0.162 0.175 ± 0.054 0.271 ± 0.151 0.454 ± 0.033 0.476 ± 0.122

Drug
DEMV Uniform 0.148 ± 0.047 0.17 ± 0.072 0.337 ± 0.109 0.486 ± 0.13 0.675 ± 0.025 0.662 ± 0.062
DEMV SMOTE 0.185 ± 0.056 0.184 ± 0.058 0.328 ± 0.108 0.41 ± 0.121 0.68 ± 0.029 0.624 ± 0.069
DEMV ADASYN 0.134 ± 0.054 0.198 ± 0.085 0.345 ± 0.106 0.519 ± 0.121 0.671 ± 0.025 0.67 ± 0.059

Law
DEMV Uniform 0.041 ± 0.028 0.145 ± 0.063 0.159 ± 0.022 0.887 ± 0.077 0.512 ± 0.011 0.77 ± 0.019
DEMV SMOTE 0.095 ± 0.031 0.144 ± 0.058 0.172 ± 0.021 0.741 ± 0.087 0.515 ± 0.01 0.737 ± 0.023
DEMV ADASYN 0.044 ± 0.031 0.14 ± 0.055 0.153 ± 0.014 0.883 ± 0.08 0.511 ± 0.012 0.77 ± 0.02

Park
DEMV Uniform 0.062 ± 0.048 0.073 ± 0.046 0.211 ± 0.047 0.809 ± 0.136 0.493 ± 0.024 0.746 ± 0.042
DEMV SMOTE 0.067 ± 0.049 0.085 ± 0.044 0.22 ± 0.048 0.796 ± 0.136 0.496 ± 0.024 0.742 ± 0.048
DEMV ADASYN 0.057 ± 0.032 0.071 ± 0.043 0.211 ± 0.052 0.812 ± 0.1 0.478 ± 0.023 0.742 ± 0.036

Wine
DEMV Uniform 0.106 ± 0.038 0.478 ± 0.264 0.078 ± 0.03 0.858 ± 0.047 0.519 ± 0.018 0.646 ± 0.177
DEMV SMOTE 0.174 ± 0.052 0.787 ± 0.369 0.138 ± 0.046 0.772 ± 0.062 0.538 ± 0.016 0.566 ± 0.154
DEMV ADASYN 0.096 ± 0.039 0.34 ± 0.215 0.083 ± 0.028 0.864 ± 0.053 0.515 ± 0.018 0.722 ± 0.073

Mean
DEMV Uniform 0.102 ± 0.063 0.232 ± 0.145 0.197 ± 0.087 0.678 ± 0.214 0.525 ± 0.079 0.677 ± 0.081
DEMV SMOTE 0.135 ± 0.077 0.284 ± 0.257 0.219 ± 0.071 0.622 ± 0.215 0.533 ± 0.077 0.646 ± 0.099
DEMV ADASYN 0.1 ± 0.066 0.213 ± 0.102 0.204 ± 0.09 0.672 ± 0.239 0.524 ± 0.076 0.679 ± 0.105

TABLE A.3: Evaluation results for all binary datasets and methods
with one sensitive variables

Data Method SP AO ZO Loss DI Acc H-Mean

Adult

No one 0.139 ± 0.017 0.104 ± 0.063 0.094 ± 0.033 0.34 ± 0.062 0.835 ± 0.007 0.659 ± 0.054
Blackbox 0.061 ± 0.021 0.253 ± 0.065 0.094 ± 0.033 0.659 ± 0.045 0.835 ± 0.007 0.802 ± 0.032
EG 0.02 ± 0.015 0.238 ± 0.072 0.078 ± 0.035 0.892 ± 0.079 0.827 ± 0.008 0.868 ± 0.026
Grid 0.066 ± 0.021 0.164 ± 0.074 0.09 ± 0.033 0.662 ± 0.11 0.833 ± 0.005 0.818 ± 0.039
DEMV 0.094 ± 0.023 0.135 ± 0.062 0.093 ± 0.03 0.57 ± 0.098 0.834 ± 0.006 0.787 ± 0.044

Compas

No one 0.217 ± 0.067 0.759 ± 0.499 0.041 ± 0.033 0.727 ± 0.066 0.67 ± 0.019 0.61 ± 0.216
Blackbox 0.064 ± 0.048 0.112 ± 0.05 0.041 ± 0.033 0.831 ± 0.114 0.67 ± 0.019 0.84 ± 0.037
EG 0.035 ± 0.027 0.158 ± 0.08 0.035 ± 0.028 0.947 ± 0.039 0.662 ± 0.015 0.857 ± 0.022
Grid 0.183 ± 0.044 0.442 ± 0.172 0.051 ± 0.036 0.731 ± 0.07 0.657 ± 0.023 0.706 ± 0.081
DEMV 0.117 ± 0.053 0.212 ± 0.154 0.037 ± 0.028 0.832 ± 0.068 0.665 ± 0.018 0.807 ± 0.066

German

No one 0.166 ± 0.105 0.549 ± 0.359 0.112 ± 0.084 0.798 ± 0.125 0.741 ± 0.045 0.676 ± 0.19
Blackbox 0.025 ± 0.026 0.191 ± 0.108 0.099 ± 0.069 0.963 ± 0.038 0.741 ± 0.028 0.864 ± 0.025
EG 0.084 ± 0.056 0.641 ± 1.016 0.085 ± 0.091 0.897 ± 0.068 0.746 ± 0.042 0.78 ± 0.139
Grid 0.133 ± 0.072 1.395 ± 1.629 0.1 ± 0.096 0.843 ± 0.083 0.746 ± 0.038 0.76 ± 0.175
DEMV 0.119 ± 0.088 0.563 ± 0.419 0.098 ± 0.077 0.851 ± 0.102 0.748 ± 0.039 0.737 ± 0.112

Mean

No one 0.174 ± 0.04 0.471 ± 0.334 0.082 ± 0.037 0.622 ± 0.247 0.749 ± 0.083 0.648 ± 0.034
Blackbox 0.05 ± 0.022 0.185 ± 0.071 0.078 ± 0.032 0.818 ± 0.152 0.749 ± 0.083 0.835 ± 0.031
EG 0.046 ± 0.033 0.346 ± 0.259 0.066 ± 0.027 0.912 ± 0.03 0.745 ± 0.083 0.835 ± 0.048
Grid 0.127 ± 0.059 0.667 ± 0.646 0.08 ± 0.026 0.745 ± 0.091 0.745 ± 0.088 0.761 ± 0.056
DEMV 0.11 ± 0.014 0.303 ± 0.228 0.076 ± 0.034 0.751 ± 0.157 0.749 ± 0.085 0.777 ± 0.036

Appendix A. Additional DEMV Evaluations 186

Statistical Parity Equalized Odds Zero One Loss
0.5

0.0

0.5

1.0

1.5

Metrics whose optimal value is zero

Disparate Impact Accuracy
0.0

0.2

0.4

0.6

0.8

1.0
Metrics whose optimal value is one

Methods
No one E.G. Grid Blackbox DEMV

(A) Application with one sensitive variable

Statistical Parity Equalized Odds Zero One Loss

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Metrics whose optimal value is zero

Disparate Impact Accuracy

0.0

0.2

0.4

0.6

0.8

1.0

Metrics whose optimal value is one

Methods
No one E.G. Grid DEMV

(B) Application with two sensitive variables

Statistical Parity Equalized Odds Zero One Loss
0.0

0.2

0.4

0.6

0.8

1.0
Metrics whose optimal value is zero

Disparate Impact Accuracy
0.0

0.2

0.4

0.6

0.8

Metrics whose optimal value is one

Methods
No one E.G. Grid DEMV

(C) Application with three sensitive variables

FIGURE A.1: Comparison of DEMV with the baselines in binary clas-
sification

with a binary dataset with one single sensitive variable, DEMV coincides with the
Sampling method of [86].

Figure A.2 reports instead the overall mean and standard deviation of all the
metrics computed in the experiments involving more complex classifiers. It can be
seen how, differently from the experiments involving a Logistic Regression model,
DEMV overcomes the other baselines in all the experiments, with the only exception
of EO with SVM in which the best method is EG. As already said, we like to remark
that EG and Grid can not be applied with a Neural Network model.

Finally, tables A.6, A.7, and A.8 reports the detailed results for each dataset in
the experiments involving, respectively Gradient Boosting, SVM and Neural Net-
work. For each dataset, we highlight in boldface the best value of each metric whose

Appendix A. Additional DEMV Evaluations 187

TABLE A.4: Evaluation results for all binary datasets and methods
with two sensitive variables

Data Method SP AO ZO Loss DI Acc H-Mean

Adult

No one 0.17 ± 0.017 0.17 ± 0.136 0.156 ± 0.01 0.174 ± 0.071 0.835 ± 0.007 0.455 ± 0.107
EG 0.021 ± 0.012 0.396 ± 0.101 0.117 ± 0.019 0.871 ± 0.08 0.82 ± 0.005 0.805 ± 0.046
Grid 0.366 ± 0.007 0.52 ± 0.014 0.237 ± 0.012 0.0 ± 0.0 0.771 ± 0.005 0.0 ± 0.0
DEMV 0.1 ± 0.021 0.284 ± 0.112 0.141 ± 0.015 0.475 ± 0.109 0.832 ± 0.004 0.706 ± 0.072

Compas

No one 0.241 ± 0.038 0.55 ± 0.212 0.127 ± 0.047 0.678 ± 0.045 0.67 ± 0.019 0.621 ± 0.13
EG 0.044 ± 0.027 0.161 ± 0.085 0.114 ± 0.048 0.932 ± 0.039 0.644 ± 0.025 0.833 ± 0.029
Grid 0.294 ± 0.235 0.396 ± 0.148 0.276 ± 0.064 0.593 ± 0.198 0.584 ± 0.016 0.592 ± 0.174
DEMV 0.116 ± 0.048 0.185 ± 0.119 0.119 ± 0.042 0.831 ± 0.067 0.662 ± 0.016 0.802 ± 0.046

German

No one 0.206 ± 0.139 0.647 ± 0.41 0.317 ± 0.123 0.743 ± 0.173 0.741 ± 0.046 0.597 ± 0.187
EG 0.116 ± 0.093 0.833 ± 0.764 0.264 ± 0.121 0.86 ± 0.117 0.749 ± 0.039 0.687 ± 0.198
Grid 0.691 ± 0.06 0.811 ± 0.049 0.44 ± 0.108 0.0 ± 0.0 0.67 ± 0.024 0.0 ± 0.0
DEMV 0.148 ± 0.131 0.628 ± 0.373 0.26 ± 0.126 0.81 ± 0.157 0.749 ± 0.036 0.662 ± 0.105

Mean

No one 0.206 ± 0.036 0.456 ± 0.252 0.2 ± 0.102 0.532 ± 0.311 0.749 ± 0.083 0.558 ± 0.09
EG 0.06 ± 0.05 0.463 ± 0.341 0.165 ± 0.086 0.888 ± 0.039 0.738 ± 0.089 0.775 ± 0.077
Grid 0.45 ± 0.212 0.576 ± 0.213 0.318 ± 0.108 0.198 ± 0.342 0.675 ± 0.094 0.197 ± 0.342
DEMV 0.121 ± 0.024 0.366 ± 0.233 0.173 ± 0.076 0.705 ± 0.2 0.748 ± 0.085 0.723 ± 0.072

TABLE A.5: Evaluation results for all binary datasets and methods
with three sensitive variables

Data Method SP AO ZO Loss DI Acc H-Mean

Adult

No one 0.179 ± 0.016 0.248 ± 0.189 0.286 ± 0.077 0.124 ± 0.073 0.835 ± 0.007 0.352 ± 0.138
EG 0.179 ± 0.012 0.259 ± 0.21 0.271 ± 0.063 0.128 ± 0.06 0.829 ± 0.007 0.367 ± 0.115
Grid 0.35 ± 0.112 0.434 ± 0.099 0.312 ± 0.031 0.119 ± 0.251 0.757 ± 0.022 0.207 ± 0.221
DEMV 0.096 ± 0.023 0.325 ± 0.15 0.31 ± 0.06 0.465 ± 0.136 0.821 ± 0.005 0.658 ± 0.105

Compas

No one 0.244 ± 0.045 0.612 ± 0.204 0.351 ± 0.092 0.683 ± 0.055 0.653 ± 0.02 0.56 ± 0.142
EG 0.262 ± 0.038 0.666 ± 0.254 0.361 ± 0.082 0.661 ± 0.046 0.652 ± 0.02 0.468 ± 0.243
Grid 0.215 ± 0.055 0.434 ± 0.141 0.339 ± 0.102 0.707 ± 0.073 0.641 ± 0.015 0.657 ± 0.069
DEMV 0.1 ± 0.045 0.215 ± 0.127 0.323 ± 0.1 0.861 ± 0.06 0.648 ± 0.023 0.758 ± 0.061

German

No one 0.191 ± 0.073 0.851 ± 0.504 0.552 ± 0.135 0.786 ± 0.08 0.744 ± 0.042 0.542 ± 0.138
EG 0.236 ± 0.118 0.554 ± 0.281 0.631 ± 0.131 0.717 ± 0.152 0.729 ± 0.033 0.527 ± 0.13
Grid 0.181 ± 0.154 0.404 ± 0.171 0.565 ± 0.179 0.775 ± 0.191 0.694 ± 0.034 0.593 ± 0.124
DEMV 0.188 ± 0.07 0.831 ± 0.476 0.512 ± 0.157 0.786 ± 0.076 0.747 ± 0.034 0.536 ± 0.18

Mean

No one 0.205 ± 0.035 0.57 ± 0.304 0.396 ± 0.139 0.531 ± 0.356 0.744 ± 0.091 0.485 ± 0.115
EG 0.226 ± 0.042 0.493 ± 0.21 0.421 ± 0.187 0.502 ± 0.325 0.737 ± 0.089 0.454 ± 0.081
Grid 0.249 ± 0.089 0.424 ± 0.017 0.405 ± 0.139 0.534 ± 0.361 0.697 ± 0.058 0.486 ± 0.243
DEMV 0.128 ± 0.052 0.457 ± 0.329 0.382 ± 0.113 0.704 ± 0.21 0.739 ± 0.087 0.651 ± 0.111

TABLE A.6: Evaluation results for binary datasets using Gradient
Boostring classifier

Data Method SP AO ZO Loss DI Acc H-Mean

Adult

No one 0.154 ± 0.017 0.225 ± 0.123 0.158 ± 0.009 0.175 ± 0.073 0.833 ± 0.006 0.454 ± 0.099
EG 0.166 ± 0.013 0.438 ± 0.298 0.155 ± 0.012 0.062 ± 0.059 0.829 ± 0.006 0.205 ± 0.175
Grid 0.156 ± 0.013 0.16 ± 0.13 0.16 ± 0.01 0.151 ± 0.067 0.832 ± 0.007 0.421 ± 0.098
DEMV 0.099 ± 0.022 0.299 ± 0.144 0.145 ± 0.014 0.443 ± 0.118 0.831 ± 0.005 0.684 ± 0.084

Compas

No one 0.234 ± 0.039 0.185 ± 0.047 0.092 ± 0.035 0.546 ± 0.059 0.689 ± 0.019 0.722 ± 0.035
EG 0.207 ± 0.042 0.164 ± 0.047 0.08 ± 0.033 0.594 ± 0.072 0.686 ± 0.018 0.746 ± 0.04
Grid 0.208 ± 0.041 0.166 ± 0.046 0.083 ± 0.042 0.591 ± 0.072 0.686 ± 0.019 0.744 ± 0.038
DEMV 0.179 ± 0.04 0.136 ± 0.043 0.098 ± 0.039 0.632 ± 0.069 0.687 ± 0.017 0.765 ± 0.035

Mean

No one 0.194 ± 0.057 0.205 ± 0.028 0.125 ± 0.047 0.361 ± 0.262 0.761 ± 0.102 0.588 ± 0.19
EG 0.186 ± 0.029 0.301 ± 0.194 0.118 ± 0.053 0.328 ± 0.376 0.758 ± 0.101 0.476 ± 0.383
Grid 0.182 ± 0.037 0.163 ± 0.004 0.122 ± 0.054 0.371 ± 0.311 0.759 ± 0.103 0.582 ± 0.228
DEMV 0.139 ± 0.057 0.218 ± 0.115 0.122 ± 0.033 0.538 ± 0.134 0.759 ± 0.102 0.724 ± 0.057

differences are statistically significant.

Appendix A. Additional DEMV Evaluations 188

Statistical Parity Equalized Odds Zero One Loss
0.0

0.1

0.2

0.3

0.4

0.5

Metrics whose optimal value is zero

Disparate Impact Accuracy
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Metrics whose optimal value is one

Methods
No one E.G. Grid DEMV

(A) Application with Gradient Boosting

Statistical Parity Equalized Odds Zero One Loss
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Metrics whose optimal value is zero

Disparate Impact Accuracy
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Metrics whose optimal value is one

Methods
No one E.G. Grid DEMV

(B) Application with Support Vector Machines

Statistical Parity Equalized Odds Zero One Loss
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
Metrics whose optimal value is zero

Disparate Impact Accuracy
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Metrics whose optimal value is one

Methods
No one DEMV

(C) Application with Neural Networks

FIGURE A.2: Comparison of DEMV with the baselines in binary clas-
sification using other classifiers

A.3 Detailed results for multi-class classification

In the following we report the tables describing the detailed results of experiments
involving multi-class datasets. For each dataset and for each method, we report the
mean and standard deviation of all metrics. In addition, we report the mean and
standard deviation of the H-Mean computed from the obtained values. Finally, we
also report the overall means and standard deviations of all the values obtained by
each method in each experiment. We split the results among experiments involving
one, two, and three sensitive variables and experiments with more complex classi-
fiers. For each dataset, we highlight in boldface the best value of each metric whose
differences are statistically significant.

Appendix A. Additional DEMV Evaluations 189

TABLE A.7: Evaluation results for binary datasets using Support Vec-
tor Machines classifier

Data Method SP AO ZO Loss DI Acc H-Mean

Adult

No one 0.165 ± 0.013 0.185 ± 0.133 0.167 ± 0.009 0.151 ± 0.042 0.831 ± 0.005 0.428 ± 0.074
EG 0.162 ± 0.014 0.175 ± 0.126 0.163 ± 0.013 0.132 ± 0.057 0.828 ± 0.006 0.386 ± 0.124
Grid 0.162 ± 0.021 0.208 ± 0.146 0.162 ± 0.017 0.178 ± 0.092 0.828 ± 0.006 0.445 ± 0.155
DEMV 0.096 ± 0.021 0.298 ± 0.155 0.151 ± 0.017 0.431 ± 0.116 0.825 ± 0.006 0.674 ± 0.083

Compas

No one 0.191 ± 0.039 0.129 ± 0.029 0.129 ± 0.066 0.523 ± 0.074 0.645 ± 0.021 0.712 ± 0.037
EG 0.196 ± 0.039 0.14 ± 0.032 0.132 ± 0.048 0.559 ± 0.073 0.643 ± 0.02 0.722 ± 0.033
Grid 0.179 ± 0.037 0.134 ± 0.044 0.139 ± 0.06 0.588 ± 0.072 0.646 ± 0.019 0.735 ± 0.036
DEMV 0.121 ± 0.039 0.123 ± 0.049 0.122 ± 0.053 0.67 ± 0.094 0.632 ± 0.019 0.768 ± 0.038

Mean

No one 0.178 ± 0.018 0.157 ± 0.04 0.148 ± 0.027 0.337 ± 0.263 0.738 ± 0.132 0.57 ± 0.201
EG 0.179 ± 0.024 0.158 ± 0.025 0.148 ± 0.022 0.346 ± 0.302 0.736 ± 0.131 0.554 ± 0.238
Grid 0.17 ± 0.012 0.171 ± 0.052 0.151 ± 0.016 0.383 ± 0.29 0.737 ± 0.129 0.59 ± 0.205
DEMV 0.108 ± 0.018 0.21 ± 0.124 0.136 ± 0.021 0.55 ± 0.169 0.728 ± 0.136 0.721 ± 0.066

TABLE A.8: Evaluation results for binary datasets using Neural Net-
work classifier

Data Method SP AO ZO Loss DI Acc H-Mean

Adult

No one 0.185 ± 0.031 0.23 ± 0.174 0.17 ± 0.013 0.17 ± 0.074 0.819 ± 0.008 0.441 ± 0.133
EG Not applicable
Grid Not applicable
DEMV 0.144 ± 0.028 0.24 ± 0.136 0.16 ± 0.017 0.315 ± 0.101 0.815 ± 0.006 0.6 ± 0.096

Compas

No one 0.214 ± 0.053 0.193 ± 0.075 0.089 ± 0.061 0.583 ± 0.068 0.652 ± 0.017 0.727 ± 0.045
EG Not applicable
Grid Not applicable
DEMV 0.136 ± 0.046 0.15 ± 0.053 0.12 ± 0.059 0.719 ± 0.077 0.651 ± 0.017 0.779 ± 0.035

Mean

No one 0.2 ± 0.021 0.212 ± 0.026 0.13 ± 0.057 0.376 ± 0.292 0.736 ± 0.118 0.584 ± 0.202
EG Not applicable
Grid Not applicable
DEMV 0.14 ± 0.006 0.195 ± 0.064 0.14 ± 0.028 0.517 ± 0.286 0.733 ± 0.116 0.69 ± 0.127

In particular, table A.9 reports the results of experiments involving one sensitive
variable, table A.10 reports the results of experiments with two sensitive variables,
and table A.11 shows the results of experiments with three sensitive variables.

Finally, tables A.12, A.13, and A.14 reports the detailed results for each dataset
of the experiments involving respectively Gradient Boosting, SVM, and Neural Net-
works.

A.4 ANOVA tables

In the following, we report the ANOVA tables of our experiments. In particular,
table A.15 shows the results for binary, and table A.16 reports the results for multi-
class experiments involving sensitive groups identified by a different number of sen-
sitive variables. Tables A.17 and A.18 reports instead the results of the ANOVA tests
involving more complex classifiers for respectively binary and multi-class classifi-
cation. We recall that, in order to be statistically significant the probability value
(p-value) most be lower than 0.05. In this case, the test rejects the null hypothesis of
equal mean for all groups.

Appendix A. Additional DEMV Evaluations 190

TABLE A.9: Evaluation results for all multi-class datasets and meth-
ods using one sensitive variables

Data Method SP AO ZO Loss DI Acc H-Mean

CMC

No one 0.188 ± 0.15 0.305 ± 0.231 0.122 ± 0.081 0.51 ± 0.282 0.521 ± 0.039 0.6 ± 0.166
Blackbox 0.125 ± 0.1 0.275 ± 0.169 0.098 ± 0.08 0.539 ± 0.308 0.515 ± 0.042 0.606 ± 0.185
EG 0.162 ± 0.128 0.292 ± 0.193 0.111 ± 0.074 0.536 ± 0.279 0.505 ± 0.038 0.62 ± 0.138
Grid 0.089 ± 0.086 0.278 ± 0.231 0.105 ± 0.057 0.748 ± 0.154 0.501 ± 0.04 0.699 ± 0.131
DEMV 0.088 ± 0.072 0.254 ± 0.146 0.092 ± 0.072 0.641 ± 0.224 0.516 ± 0.038 0.687 ± 0.107

Crime

No one 0.389 ± 0.082 0.329 ± 0.113 0.069 ± 0.049 0.182 ± 0.076 0.497 ± 0.028 0.409 ± 0.109
Blackbox 0.425 ± 0.074 0.884 ± 0.314 0.069 ± 0.049 0.097 ± 0.082 0.497 ± 0.028 0.186 ± 0.118
EG 0.39 ± 0.084 0.332 ± 0.112 0.066 ± 0.05 0.179 ± 0.077 0.496 ± 0.03 0.403 ± 0.118
Grid 0.3 ± 0.111 0.399 ± 0.135 0.117 ± 0.06 0.336 ± 0.182 0.433 ± 0.039 0.487 ± 0.124
DEMV 0.253 ± 0.064 0.317 ± 0.109 0.062 ± 0.034 0.377 ± 0.106 0.47 ± 0.029 0.568 ± 0.063

Drug

No one 0.264 ± 0.121 0.308 ± 0.236 0.142 ± 0.076 0.343 ± 0.216 0.68 ± 0.025 0.542 ± 0.183
Blackbox 0.441 ± 0.144 0.806 ± 0.58 0.145 ± 0.073 0.095 ± 0.047 0.683 ± 0.025 0.268 ± 0.087
EG 0.246 ± 0.107 0.267 ± 0.135 0.137 ± 0.093 0.371 ± 0.193 0.68 ± 0.026 0.583 ± 0.153
Grid 0.26 ± 0.117 0.298 ± 0.245 0.134 ± 0.091 0.336 ± 0.201 0.683 ± 0.025 0.541 ± 0.189
DEMV 0.128 ± 0.083 0.218 ± 0.112 0.126 ± 0.058 0.585 ± 0.199 0.678 ± 0.026 0.72 ± 0.091

Law

No one 0.26 ± 0.04 0.31 ± 0.038 0.072 ± 0.04 0.441 ± 0.128 0.521 ± 0.01 0.61 ± 0.062
Blackbox 0.179 ± 0.035 0.231 ± 0.093 0.072 ± 0.04 0.408 ± 0.206 0.521 ± 0.01 0.584 ± 0.119
EG 0.231 ± 0.048 0.264 ± 0.044 0.072 ± 0.037 0.487 ± 0.134 0.521 ± 0.009 0.64 ± 0.064
Grid 0.176 ± 0.133 0.228 ± 0.149 0.104 ± 0.093 0.626 ± 0.289 0.503 ± 0.013 0.67 ± 0.135
DEMV 0.103 ± 0.024 0.126 ± 0.039 0.06 ± 0.03 0.757 ± 0.056 0.518 ± 0.011 0.76 ± 0.02

Park

No one 0.221 ± 0.042 0.207 ± 0.055 0.084 ± 0.064 0.473 ± 0.075 0.503 ± 0.029 0.643 ± 0.046
Blackbox 0.21 ± 0.092 0.381 ± 0.2 0.087 ± 0.057 0.334 ± 0.164 0.504 ± 0.024 0.496 ± 0.148
EG 0.216 ± 0.051 0.23 ± 0.072 0.171 ± 0.079 0.461 ± 0.091 0.49 ± 0.022 0.622 ± 0.056
Grid 0.221 ± 0.056 0.228 ± 0.05 0.172 ± 0.077 0.454 ± 0.11 0.493 ± 0.024 0.619 ± 0.064
DEMV 0.111 ± 0.054 0.157 ± 0.043 0.085 ± 0.05 0.697 ± 0.121 0.502 ± 0.022 0.728 ± 0.037

Wine

No one 0.342 ± 0.165 1.067 ± 0.734 0.043 ± 0.033 0.544 ± 0.172 0.56 ± 0.02 0.607 ± 0.133
Blackbox 0.056 ± 0.043 0.192 ± 0.132 0.048 ± 0.029 0.675 ± 0.223 0.561 ± 0.02 0.735 ± 0.123
EG 0.338 ± 0.17 1.075 ± 0.756 0.043 ± 0.036 0.552 ± 0.179 0.56 ± 0.019 0.624 ± 0.104
Grid 0.363 ± 0.206 0.761 ± 0.233 0.204 ± 0.184 0.453 ± 0.346 0.498 ± 0.043 0.38 ± 0.196
DEMV 0.195 ± 0.078 0.84 ± 0.642 0.033 ± 0.025 0.737 ± 0.077 0.545 ± 0.022 0.628 ± 0.186

Mean

No one 0.277 ± 0.075 0.421 ± 0.319 0.089 ± 0.037 0.416 ± 0.134 0.547 ± 0.069 0.568 ± 0.085
Blackbox 0.239 ± 0.159 0.462 ± 0.305 0.087 ± 0.033 0.358 ± 0.234 0.547 ± 0.07 0.479 ± 0.211
EG 0.264 ± 0.084 0.41 ± 0.328 0.1 ± 0.048 0.431 ± 0.139 0.542 ± 0.072 0.582 ± 0.09
Grid 0.235 ± 0.096 0.365 ± 0.204 0.139 ± 0.041 0.492 ± 0.164 0.518 ± 0.085 0.566 ± 0.121
DEMV 0.146 ± 0.064 0.319 ± 0.264 0.076 ± 0.032 0.632 ± 0.14 0.538 ± 0.073 0.682 ± 0.072

Appendix A. Additional DEMV Evaluations 191

TABLE A.10: Evaluation results for all multi-class datasets and meth-
ods using two sensitive variables

Data Method SP AO ZO Loss DI Acc H-Mean

CMC

No one 0.126 ± 0.034 0.219 ± 0.118 0.33 ± 0.155 0.494 ± 0.128 0.521 ± 0.04 0.62 ± 0.058
EG 0.107 ± 0.045 0.218 ± 0.15 0.35 ± 0.171 0.543 ± 0.173 0.509 ± 0.035 0.617 ± 0.081
Grid 0.079 ± 0.049 0.241 ± 0.109 0.26 ± 0.176 0.815 ± 0.115 0.445 ± 0.049 0.679 ± 0.062
DEMV 0.056 ± 0.029 0.206 ± 0.191 0.233 ± 0.102 0.663 ± 0.157 0.512 ± 0.038 0.694 ± 0.074

Crime

No one 0.339 ± 0.051 0.442 ± 0.139 0.209 ± 0.07 0.09 ± 0.066 0.497 ± 0.029 0.261 ± 0.108
EG 0.332 ± 0.052 0.458 ± 0.166 0.212 ± 0.084 0.091 ± 0.074 0.493 ± 0.029 0.252 ± 0.139
Grid 0.217 ± 0.077 0.335 ± 0.091 0.318 ± 0.077 0.445 ± 0.136 0.34 ± 0.042 0.515 ± 0.039
DEMV 0.202 ± 0.049 0.32 ± 0.138 0.164 ± 0.044 0.365 ± 0.143 0.441 ± 0.028 0.542 ± 0.076

Drug

No one 0.299 ± 0.055 0.319 ± 0.15 0.335 ± 0.103 0.142 ± 0.086 0.68 ± 0.026 0.357 ± 0.144
EG 0.272 ± 0.047 0.23 ± 0.118 0.375 ± 0.087 0.198 ± 0.068 0.681 ± 0.032 0.448 ± 0.073
Grid 0.198 ± 0.057 0.193 ± 0.073 0.331 ± 0.101 0.356 ± 0.182 0.653 ± 0.025 0.574 ± 0.104
DEMV 0.148 ± 0.047 0.17 ± 0.072 0.337 ± 0.109 0.486 ± 0.13 0.675 ± 0.025 0.662 ± 0.062

Law

No one 0.2 ± 0.027 0.2 ± 0.029 0.164 ± 0.03 0.502 ± 0.072 0.521 ± 0.01 0.655 ± 0.033
EG 0.248 ± 0.031 0.308 ± 0.043 0.184 ± 0.027 0.456 ± 0.076 0.509 ± 0.013 0.61 ± 0.033
Grid 0.3 ± 0.057 0.359 ± 0.09 0.193 ± 0.026 0.351 ± 0.086 0.508 ± 0.013 0.546 ± 0.067
DEMV 0.041 ± 0.028 0.145 ± 0.063 0.159 ± 0.022 0.887 ± 0.077 0.512 ± 0.011 0.77 ± 0.019

Park

No one 0.208 ± 0.041 0.218 ± 0.072 0.246 ± 0.067 0.424 ± 0.089 0.503 ± 0.026 0.603 ± 0.05
EG 0.272 ± 0.03 0.216 ± 0.041 0.324 ± 0.107 0.185 ± 0.044 0.481 ± 0.012 0.424 ± 0.053
Grid 0.125 ± 0.031 0.127 ± 0.038 0.446 ± 0.063 0.617 ± 0.081 0.463 ± 0.019 0.631 ± 0.025
DEMV 0.062 ± 0.048 0.073 ± 0.046 0.211 ± 0.047 0.809 ± 0.136 0.493 ± 0.024 0.746 ± 0.042

Wine

No one 0.322 ± 0.039 0.768 ± 0.185 0.146 ± 0.053 0.534 ± 0.048 0.56 ± 0.021 0.461 ± 0.117
EG 0.189 ± 0.066 0.35 ± 0.163 0.178 ± 0.08 0.692 ± 0.096 0.541 ± 0.021 0.649 ± 0.066
Grid 0.153 ± 0.042 0.616 ± 0.234 0.425 ± 0.055 0.77 ± 0.049 0.435 ± 0.021 0.535 ± 0.085
DEMV 0.106 ± 0.038 0.478 ± 0.264 0.078 ± 0.03 0.858 ± 0.047 0.519 ± 0.018 0.676 ± 0.177

Mean

No one 0.249 ± 0.084 0.361 ± 0.219 0.238 ± 0.081 0.364 ± 0.196 0.547 ± 0.069 0.493 ± 0.16
EG 0.237 ± 0.078 0.297 ± 0.096 0.27 ± 0.089 0.361 ± 0.238 0.536 ± 0.074 0.505 ± 0.16
Grid 0.179 ± 0.078 0.312 ± 0.172 0.329 ± 0.096 0.559 ± 0.205 0.474 ± 0.104 0.58 ± 0.063
DEMV 0.102 ± 0.063 0.232 ± 0.145 0.197 ± 0.087 0.678 ± 0.214 0.525 ± 0.079 0.677 ± 0.081

TABLE A.11: Evaluation results for all multi-class datasets and meth-
ods using three sensitive variables

Data Method SP AO ZO Loss DI Acc H-Mean

CMC

No one 0.148 ± 0.039 0.283 ± 0.141 0.305 ± 0.143 0.353 ± 0.12 0.497 ± 0.042 0.54 ± 0.095
EG 0.134 ± 0.047 0.27 ± 0.108 0.346 ± 0.114 0.427 ± 0.141 0.489 ± 0.038 0.574 ± 0.073
Grid 0.065 ± 0.057 0.237 ± 0.116 0.277 ± 0.196 0.854 ± 0.128 0.432 ± 0.043 0.673 ± 0.066
DEMV 0.031 ± 0.019 0.326 ± 0.235 0.274 ± 0.122 0.695 ± 0.189 0.489 ± 0.036 0.656 ± 0.112

Crime

No one 0.267 ± 0.066 0.435 ± 0.152 0.371 ± 0.097 0.176 ± 0.161 0.504 ± 0.035 0.336 ± 0.203
EG 0.258 ± 0.072 0.459 ± 0.215 0.413 ± 0.128 0.171 ± 0.17 0.493 ± 0.04 0.307 ± 0.242
Grid 0.141 ± 0.058 0.539 ± 0.229 0.381 ± 0.074 0.159 ± 0.178 0.309 ± 0.028 0.218 ± 0.233
DEMV 0.149 ± 0.074 0.291 ± 0.133 0.349 ± 0.048 0.498 ± 0.226 0.437 ± 0.03 0.571 ± 0.096

Drug

No one 0.299 ± 0.045 0.293 ± 0.152 0.331 ± 0.099 0.144 ± 0.086 0.67 ± 0.029 0.36 ± 0.142
EG 0.286 ± 0.056 0.236 ± 0.124 0.366 ± 0.067 0.172 ± 0.054 0.671 ± 0.042 0.419 ± 0.065
Grid 0.207 ± 0.038 0.278 ± 0.14 0.295 ± 0.092 0.338 ± 0.155 0.64 ± 0.025 0.546 ± 0.147
DEMV 0.142 ± 0.055 0.178 ± 0.068 0.362 ± 0.093 0.504 ± 0.169 0.66 ± 0.033 0.659 ± 0.072

Law

No one 0.2 ± 0.027 0.201 ± 0.028 0.165 ± 0.03 0.502 ± 0.071 0.52 ± 0.01 0.655 ± 0.032
EG 0.225 ± 0.03 0.238 ± 0.032 0.172 ± 0.031 0.457 ± 0.072 0.517 ± 0.012 0.628 ± 0.034
Grid 0.278 ± 0.091 0.359 ± 0.116 0.189 ± 0.028 0.408 ± 0.189 0.505 ± 0.016 0.566 ± 0.089
DEMV 0.042 ± 0.029 0.144 ± 0.064 0.159 ± 0.022 0.885 ± 0.078 0.512 ± 0.011 0.769 ± 0.019

Wine

No one 0.434 ± 0.049 1.513 ± 0.308 0.163 ± 0.07 0.448 ± 0.049 0.546 ± 0.019 0.538 ± 0.063
EG 0.419 ± 0.049 1.453 ± 0.294 0.169 ± 0.07 0.463 ± 0.051 0.541 ± 0.018 0.524 ± 0.071
Grid 0.057 ± 0.043 0.101 ± 0.045 0.429 ± 0.063 0.76 ± 0.125 0.398 ± 0.022 0.642 ± 0.041
DEMV 0.097 ± 0.04 0.593 ± 0.287 0.109 ± 0.048 0.877 ± 0.051 0.508 ± 0.02 0.577 ± 0.192

Mean

No one 0.27 ± 0.109 0.545 ± 0.548 0.267 ± 0.097 0.325 ± 0.16 0.547 ± 0.071 0.486 ± 0.135
EG 0.264 ± 0.104 0.531 ± 0.524 0.293 ± 0.115 0.338 ± 0.153 0.542 ± 0.075 0.49 ± 0.128
Grid 0.15 ± 0.094 0.303 ± 0.162 0.314 ± 0.094 0.504 ± 0.293 0.457 ± 0.124 0.529 ± 0.182
DEMV 0.092 ± 0.055 0.306 ± 0.177 0.251 ± 0.113 0.692 ± 0.19 0.521 ± 0.083 0.646 ± 0.08

Appendix A. Additional DEMV Evaluations 192

TABLE A.12: Evaluation results for multi-class datasets using Gradi-
ent Boosting classifier

Data Method SP AO ZO Loss DI Acc H-Mean

CMC

No one 0.09 ± 0.053 0.178 ± 0.107 0.279 ± 0.127 0.656 ± 0.177 0.557 ± 0.04 0.696 ± 0.062
EG 0.095 ± 0.068 0.183 ± 0.119 0.309 ± 0.153 0.658 ± 0.221 0.546 ± 0.039 0.685 ± 0.086
Grid 0.065 ± 0.043 0.194 ± 0.091 0.195 ± 0.077 0.742 ± 0.138 0.443 ± 0.042 0.693 ± 0.047
DEMV 0.056 ± 0.04 0.192 ± 0.139 0.272 ± 0.146 0.74 ± 0.17 0.559 ± 0.042 0.716 ± 0.061

Law

No one 0.232 ± 0.03 0.221 ± 0.035 0.175 ± 0.025 0.405 ± 0.082 0.536 ± 0.01 0.61 ± 0.045
EG 0.071 ± 0.053 0.167 ± 0.072 0.154 ± 0.026 0.809 ± 0.142 0.527 ± 0.008 0.754 ± 0.039
Grid 0.322 ± 0.071 0.433 ± 0.049 0.161 ± 0.025 0.344 ± 0.157 0.512 ± 0.01 0.522 ± 0.063
DEMV 0.091 ± 0.029 0.15 ± 0.065 0.156 ± 0.02 0.739 ± 0.088 0.526 ± 0.008 0.742 ± 0.025

Mean

No one 0.161 ± 0.1 0.2 ± 0.03 0.227 ± 0.074 0.53 ± 0.177 0.546 ± 0.015 0.653 ± 0.061
EG 0.083 ± 0.017 0.175 ± 0.011 0.231 ± 0.11 0.734 ± 0.107 0.536 ± 0.013 0.72 ± 0.049
Grid 0.194 ± 0.182 0.314 ± 0.169 0.178 ± 0.024 0.543 ± 0.281 0.478 ± 0.049 0.607 ± 0.121
DEMV 0.074 ± 0.025 0.171 ± 0.03 0.214 ± 0.082 0.74 ± 0.001 0.542 ± 0.023 0.729 ± 0.018

TABLE A.13: Evaluation results for multi-class datasets using Sup-
port Vector Machines classifier

Data Method SP AO ZO Loss DI Acc H-Mean

CMC

No one 0.105 ± 0.046 0.174 ± 0.119 0.321 ± 0.18 0.574 ± 0.17 0.543 ± 0.046 0.652 ± 0.077
EG 0.109 ± 0.044 0.16 ± 0.071 0.337 ± 0.158 0.549 ± 0.142 0.546 ± 0.045 0.652 ± 0.067
Grid 0.197 ± 0.068 0.273 ± 0.083 0.295 ± 0.191 0.197 ± 0.22 0.435 ± 0.045 0.302 ± 0.261
DEMV 0.047 ± 0.03 0.218 ± 0.164 0.279 ± 0.128 0.73 ± 0.153 0.546 ± 0.042 0.707 ± 0.062

Law

No one 0.267 ± 0.022 0.241 ± 0.019 0.173 ± 0.031 0.311 ± 0.048 0.533 ± 0.011 0.554 ± 0.035
EG 0.234 ± 0.022 0.207 ± 0.04 0.192 ± 0.03 0.343 ± 0.063 0.525 ± 0.01 0.575 ± 0.044
Grid 0.375 ± 0.024 0.492 ± 0.039 0.159 ± 0.019 0.277 ± 0.04 0.511 ± 0.013 0.482 ± 0.033
DEMV 0.116 ± 0.034 0.134 ± 0.042 0.161 ± 0.02 0.67 ± 0.099 0.523 ± 0.01 0.724 ± 0.031

Mean

No one 0.186 ± 0.115 0.208 ± 0.047 0.247 ± 0.105 0.442 ± 0.186 0.538 ± 0.007 0.603 ± 0.069
EG 0.172 ± 0.088 0.184 ± 0.033 0.264 ± 0.103 0.446 ± 0.146 0.536 ± 0.015 0.613 ± 0.054
Grid 0.286 ± 0.126 0.382 ± 0.155 0.227 ± 0.096 0.237 ± 0.057 0.473 ± 0.054 0.392 ± 0.127
DEMV 0.082 ± 0.049 0.176 ± 0.059 0.22 ± 0.083 0.7 ± 0.042 0.534 ± 0.016 0.716 ± 0.012

TABLE A.14: Evaluation results for multi-class datasets using Neural
Network classifier

Data Method SP AO ZO Loss DI Acc H-Mean

CMC

No one 0.081 ± 0.087 0.149 ± 0.104 0.338 ± 0.195 0.702 ± 0.261 0.542 ± 0.053 0.683 ± 0.098
EG Not applicable
Grid Not applicable
DEMV 0.06 ± 0.059 0.17 ± 0.111 0.293 ± 0.135 0.756 ± 0.171 0.544 ± 0.048 0.717 ± 0.071

Law

No one 0.218 ± 0.04 0.197 ± 0.039 0.168 ± 0.03 0.436 ± 0.085 0.531 ± 0.01 0.629 ± 0.047
EG Not applicable
Grid Not applicable
DEMV 0.096 ± 0.044 0.138 ± 0.06 0.125 ± 0.032 0.721 ± 0.129 0.519 ± 0.01 0.739 ± 0.04

Mean

No one 0.15 ± 0.097 0.173 ± 0.034 0.253 ± 0.12 0.569 ± 0.188 0.536 ± 0.008 0.656 ± 0.038
EG Not applicable
Grid Not applicable
DEMV 0.078 ± 0.025 0.154 ± 0.023 0.209 ± 0.119 0.738 ± 0.025 0.532 ± 0.018 0.728 ± 0.016

Appendix A. Additional DEMV Evaluations 193

TABLE A.15: ANOVA tables for binary datasets

(A) One sensitive variable

DF SS MS F p-value

Statistical Parity

C(method) 4.0 153.413 38.353 40.894 0.0
Residual 2405.0 2255.587 0.938

Equalized Odds

C(method) 4.0 57.828 14.457 12.001 0.0
Residual 670.0 807.154 1.205

Zero-one Loss

C(method) 4.0 2.999 0.75 0.749 0.558
Residual 2405.0 2406.001 1.00

Disparate Impact

C(method) 4.0 108.786 27.197 28.436 0.0
Residual 2405.0 2300.214 0.956

Accuracy

C(method) 4.0 0.453 0.113 0.113 0.978
Residual 2405.0 2408.547 1.001

H-Mean

C(method) 3.0 1.378 0.459 24.349 0.0
Residual 366.0 6.906 0.019

(B) Two sensitive variables

DF SS MS F p-value

Statistical Parity

C(method) 3.0 42.582 14.194 25.563 0.0
Residual 89.0 49.418 0.555

Equalized Odds

C(method) 3.0 8.884 2.961 3.365 0.026
Residual 49.0 43.116 0.880

Zero One Loss

C(method) 3.0 24.807 8.269 10.953 0.0
Residual 89.0 67.193 0.755

Disparate Impact

C(method) 3.0 44.572 14.857 27.881 0.0
Residual 89.0 47.428 0.533

Accuracy

C(method) 3.0 14.831 4.944 5.702 0.001
Residual 89.0 77.169 0.867

H-Mean

C(method) 3.0 6.423 2.141 77.032 0.0
Residual 276.0 7.671 0.028

(C) Three sensitive variables

DF SS MS F p-value

Statistical Parity

C(method) 3.0 9.643 3.214 3.474 0.019
Residual 89.0 82.357 0.925

Equalized Odds

C(method) 3.0 19.087 6.362 4.388 0.01
Residual 38.0 55.102 1.450

Zero One Loss

C(method) 3.0 0.432 0.144 0.14 0.936
Residual 89.0 91.568 1.029

Disparate Impact

C(method) 3.0 1.196 0.399 0.391 0.76
Residual 89.0 90.804 1.020

Accuracy

C(method) 3.0 7.084 2.361 2.475 0.067
Residual 89.0 84.916 0.954

H-Mean

C(method) 3.0 1.038 0.346 12.147 0.0
Residual 276.0 7.858 0.028

Appendix A. Additional DEMV Evaluations 194

TABLE A.16: ANOVA tables for multi-class datasets

(A) One sensitive variable

DF SS MS F p-value

Statistical Parity

C(method) 4.0 7.402 1.850 1.86 0.016
Residual 651.0 647.598 0.995

Equalized Odds

C(method) 4.0 13.725 3.431 1.326 0.262
Residual 184.0 476.038 2.587

Zero-one Loss

C(method) 4.0 50.71 12.678 13.657 0.0
Residual 651.0 604.29 0.928

Disparate Impact

C(method) 4.0 19.447 4.862 4.98 0.001
Residual 651.0 635.553 0.976

Accuracy

C(method) 4.0 4.338 1.084 1.085 0.363
Residual 651.0 650.662 0.999

H-Mean

C(method) 3.0 0.628 0.209 7.547 0.0
Residual 926.0 25.670 0.028

(B) Two sensitive variables

DF SS MS F p-value

Statistical Parity

C(method) 4.0 104.788 26.197 39.255 0.0
Residual 303.0 202.212 0.667

Equalized Odds

C(method) 4.0 19.262 4.816 3.127 0.018
Residual 112.0 172.494 1.540

Zero One Loss

C(method) 4.0 29.399 7.350 8.022 0.0
Residual 303.0 277.601 0.916

Disparate Impact

C(method) 4.0 18.98 4.745 4.992 0.001
Residual 303.0 288.02 0.951

Accuracy

C(method) 4.0 17.356 4.339 4.539 0.001
Residual 303.0 289.644 0.956

H-Mean

C(method) 3.0 1.243 0.414 16.59 0.0
Residual 686.0 17.130 0.025

(C) Three sensitive variables

DF SS MS F p-value

Statistical Parity

C(method) 3.0 7.6 2.533 2.582 0.054
Residual 243.0 238.4 0.981

Equalized Odds

C(method) 3.0 9.151 3.050 1.333 0.27
Residual 73.0 167.103 2.289

Zero One Loss

C(method) 3.0 24.773 8.258 9.07 0.0
Residual 243.0 221.227 0.910

Disparate Impact

C(method) 3.0 7.054 2.351 2.391 0.069
Residual 243.0 238.946 0.983

Accuracy

C(method) 3.0 21.399 7.133 7.717 0.0
Residual 243.0 224.601 0.924

H-Mean

C(method) 3.0 0.572 0.191 6.921 0.0
Residual 586.0 16.132 0.028

Appendix A. Additional DEMV Evaluations 195

TABLE A.17: ANOVA tables of binary experiments with other classi-
fiers

(A) Gradient Boosting

DF SS MS F p-value

Statistical Parity

C(method) 3.0 46.935 15.645 16.768 0.0
Residual 656.0 612.065 0.933

Equalized Odds

C(method) 3.0 10.709 3.570 3.612 0.013
Residual 656.0 648.291 0.988

Zero-one Loss

C(method) 3.0 3074.488 1024.829 2.16 0.092
Residual 385.0 182633.494 474.373

Disparate Impact

C(method) 3.0 77.001 25.667 28.931 0.0
Residual 656.0 581.999 0.887

Accuracy

C(method) 3.0 0.026 0.009 0.009 0.999
Residual 656.0 658.974 1.005

H-Mean

C(method) 3.0 0.385 0.128 46.927 0.0
Residual 656.0 1.793 0.003

(B) Support Vector Machines

DF SS MS F p-value

Statistical Parity

C(method) 3.0 167.808 55.936 74.704 0.0
Residual 656.0 491.192 0.749

Equalized Odds

C(method) 3.0 6.486 2.162 2.173 0.09
Residual 656.0 652.514 0.995

Zero One Loss

C(method) 3.0 0.008 0.003 1.523 0.207
Residual 656.0 1.159 0.002

Disparate Impact

C(method) 3.0 69.386 23.129 25.733 0.0
Residual 656.0 589.614 0.899

Accuracy

C(method) 3.0 0.404 0.135 0.134 0.94
Residual 656.0 658.596 1.004

H-Mean

C(method) 1.0 0.101 0.101 28.775 0.0
Residual 618.0 2.164 0.004

(C) Neural Networks

DF SS MS F p-value

Statistical Parity

C(method) 1.0 42.363 42.363 45.402 0.0
Residual 618.0 576.637 0.933

Equalized Odds

C(method) 1.0 0.387 0.387 0.386 0.534
Residual 618.0 618.613 1.001

Zero One Loss

C(method) 1.0 349.329 349.329 0.826 0.364
Residual 373.0 157719.633 422.841

Disparate Impact

C(method) 1.0 7.721 7.721 7.806 0.005
Residual 618.0 611.279 0.989

Accuracy

C(method) 1.0 0.02 0.020 0.02 0.886
Residual 618.0 618.98 1.002

H-Mean

C(method) 1.0 0.101 0.101 28.775 0.0
Residual 618.0 2.164 0.004

Appendix A. Additional DEMV Evaluations 196

TABLE A.18: ANOVA tables of multi-class experiments with other
classifiers

(A) Gradient Boosting

DF SS MS F p-value

Statistical Parity

C(method) 3.0 141.392 47.131 59.732 0.0
Residual 656.0 517.608 0.789

Equalized Odds

C(method) 3.0 31.746 10.582 11.067 0.0
Residual 656.0 627.254 0.956

Zero-one Loss

C(method) 3.0 164.678 54.893 0.429 0.732
Residual 203.0 25949.535 127.830

Disparate Impact

C(method) 3.0 67.483 22.494 24.947 0.0
Residual 656.0 591.517 0.902

Accuracy

C(method) 3.0 62.187 20.729 22.785 0.0
Residual 656.0 596.813 0.910

H-Mean

C(method) 3.0 0.385 0.128 46.927 0.0
Residual 656.0 1.793 0.003

(B) Support Vector Machines

DF SS MS F p-value

Statistical Parity

C(method) 3.0 1.119 0.373 137.255 0.0
Residual 656.0 1.783 0.003

Equalized Odds

C(method) 3.0 0.839 0.280 17.93 0.0
Residual 656.0 10.227 0.016

Zero One Loss

C(method) 3.0 0.051 0.017 1.346 0.258
Residual 656.0 8.290 0.013

Disparate Impact

C(method) 3.0 6.316 2.105 115.033 0.0
Residual 656.0 12.005 0.018

Accuracy

C(method) 3.0 0.074 0.025 22.195 0.0
Residual 656.0 0.731 0.001

H-Mean

C(method) 3.0 2.383 0.794 211.341 0.0
Residual 656.0 2.465 0.004

(C) Neural Networks

DF SS MS F p-value

Statistical Parity

C(method) 1.0 0.098 0.098 30.711 0.0
Residual 618.0 1.975 0.003

Equalized Odds

C(method) 1.0 0.007 0.007 0.892 0.345
Residual 618.0 5.064 0.008

Zero One Loss

C(method) 1.0 0.038 0.038 2.216 0.137
Residual 618.0 10.539 0.017

Disparate Impact

C(method) 1.0 0.556 0.556 23.01 0.0
Residual 618.0 14.938 0.024

Accuracy

C(method) 1.0 0.001 0.001 0.403 0.526
Residual 618.0 0.844 0.001

H-Mean

C(method) 1.0 0.101 0.101 28.775 0.0
Residual 618.0 2.164 0.004

197

Bibliography

[1] J. Bosch, H. H. Olsson, and I. Crnkovic, Engineering AI Systems: A Research
Agenda, en, ch., ISBN: 9781799851011 Pages: 1-19 Publisher: IGI Global, 2021.
DOI: 10.4018/978-1-7998-5101-1.ch001.

[2] H. Muccini and K. Vaidhyanathan, “Software Architecture for ML-based Sys-
tems: What Exists and What Lies Ahead,” in 2021 IEEE/ACM 1st Workshop on
AI Engineering - Software Engineering for AI (WAIN), 2021, pp. 121–128. DOI:
10.1109/wain52551.2021.00026.

[3] S. Martínez-Fernández, J. Bogner, X. Franch, et al., “Software Engineering for
AI-Based Systems: A Survey,” ACM Transactions on Software Engineering and
Methodology, vol. 31, no. 2, 37e:1–37e:59, 2022, ISSN: 1049-331X. DOI: 10.1145/
3487043.

[4] S. Amershi, A. Begel, C. Bird, et al., “Software Engineering for Machine Learn-
ing: A Case Study,” en, in 2019 IEEE/ACM 41st International Conference on
Software Engineering: Software Engineering in Practice (ICSE-SEIP), Montreal,
QC, Canada: IEEE, 2019, pp. 291–300, ISBN: 978-1-72811-760-7. DOI: 10.1109/
ICSE-SEIP.2019.00042.

[5] N. Nahar, H. Zhang, G. Lewis, et al., A Meta-Summary of Challenges in Building
Products with ML Components – Collecting Experiences from 4758+ Practitioners,
2023. DOI: 10.48550/arXiv.2304.00078. (visited on 07/31/2023).

[6] F. Kumeno, “Sofware engneering challenges for machine learning applica-
tions: A literature review,” en, Intelligent Decision Technologies, vol. 13, no. 4,
pp. 463–476, 2020, ISSN: 18724981, 18758843. DOI: 10.3233/idt-190160.

[7] J. M. Zhang, M. Harman, L. Ma, et al., “Machine learning testing: Survey,
landscapes and horizons,” en, IEEE Transactions on Software Engineering, pp. 1–
1, 2020, ISSN: 0098-5589, 1939-3520, 2326-3881. DOI: 10 . 1109 / tse . 2019 .
2962027.

[8] S. Studer, T. B. Bui, C. Drescher, et al., “Towards crisp-ml (q): A machine learn-
ing process model with quality assurance methodology,” Machine Learning
and Knowledge Extraction, vol. 3, no. 2, pp. 392–413, 2021.

[9] K. Hamada, F. Ishikawa, S. Masuda, et al., “Guidelines for quality assurance
of machine learning-based artificial intelligence.,” in SEKE, 2020, pp. 335–341.

[10] S. Azimi and C. Pahl, “A layered quality framework for machine learning-
driven data and information models.,” in ICEIS (1), 2020, pp. 579–587.

[11] F. Ishikawa, “Concepts in quality assessment for machine learning-from test
data to arguments,” in International Conference on Conceptual Modeling, Springer,
2018, pp. 536–544.

[12] J. Siebert, L. Joeckel, J. Heidrich, et al., “Construction of a quality model for
machine learning systems,” Software Quality Journal, pp. 1–29, 2021.

https://doi.org/10.4018/978-1-7998-5101-1.ch001
https://doi.org/10.1109/wain52551.2021.00026
https://doi.org/10.1145/3487043
https://doi.org/10.1145/3487043
https://doi.org/10.1109/ICSE-SEIP.2019.00042
https://doi.org/10.1109/ICSE-SEIP.2019.00042
https://doi.org/10.48550/arXiv.2304.00078
https://doi.org/10.3233/idt-190160
https://doi.org/10.1109/tse.2019.2962027
https://doi.org/10.1109/tse.2019.2962027

Bibliography 198

[13] Y. Chang, X. Wang, J. Wang, et al., “A survey on evaluation of large language
models,” ACM Transactions on Intelligent Systems and Technology, vol. 15, no. 3,
pp. 1–45, 2024.

[14] Y. Brun and A. Meliou, “Software fairness,” en, in Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, Lake Buena Vista FL USA: Acm,
2018, pp. 754–759, ISBN: 978-1-4503-5573-5. DOI: 10.1145/3236024.3264838.

[15] Z. Chen, J. M. Zhang, M. Hort, et al., Fairness Testing: A Comprehensive Survey
and Analysis of Trends, 2022. arXiv: 2207.10223 [cs.SE]. [Online]. Available:
http://arxiv.org/abs/2207.10223 (visited on 09/28/2022).

[16] S. Georgiou, M. Kechagia, T. Sharma, et al., “Green ai: Do deep learning
frameworks have different costs?” In Procs. of the 44th International Confer-
ence on Software Engineering, ser. ICSE ’22, Pittsburgh, Pennsylvania: Associ-
ation for Computing Machinery, 2022, 1082–1094, ISBN: 9781450392211. DOI:
10.1145/3510003.3510221.

[17] R. Verdecchia, P. Lago, C. Ebert, et al., “Green it and green software,” IEEE
Software, vol. 38, no. 6, pp. 7–15, 2021.

[18] ONU, ONU Sustainable Development Goals, en-US. [Online]. Available: https:
//www.un.org/sustainabledevelopment/.

[19] N. Mehrabi, F. Morstatter, N. Saxena, et al., “A survey on bias and fairness
in machine learning,” en, ACM Comput. Surv., vol. 54, no. 6, pp. 1–35, 2021,
ISSN: 0360-0300. DOI: 10.1145/3457607.

[20] S. Hajian, F. Bonchi, and C. Castillo, “Algorithmic bias: From discrimination
discovery to fairness-aware data mining,” in Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, San
Francisco, CA, USA, August 13-17, 2016, ACM, 2016, pp. 2125–2126.

[21] A. D’Angelo, G. d’Aloisio, F. Marzi, et al., “Uncovering gender gap in academia:
A comprehensive analysis within the software engineering community,” Jour-
nal of Systems and Software, p. 112 162, 2024.

[22] G. d’Aloisio, A. D’Angelo, F. Marzi, et al., “Data-driven analysis of gender
fairness in the software engineering academic landscape,” in European Confer-
ence on Software Architecture, Springer Nature Switzerland Cham, 2023, pp. 89–
103.

[23] R. Fischer, M. Jakobs, S. Mücke, et al., “A unified framework for assessing en-
ergy efficiency of machine learning,” in Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, Springer, 2022, pp. 39–54.

[24] S. Wenninger, C. Kaymakci, C. Wiethe, et al., “How sustainable is machine
learning in energy applications?–the sustainable machine learning balance
sheet,” 2022.

[25] E. García-Martín, C. F. Rodrigues, G. Riley, et al., “Estimation of energy con-
sumption in machine learning,” Journal of Parallel and Distributed Computing,
vol. 134, pp. 75–88, 2019.

[26] I. Sommerville, Software Engineering, 9/E. Pearson Education India, 2011.

https://doi.org/10.1145/3236024.3264838
https://arxiv.org/abs/2207.10223
http://arxiv.org/abs/2207.10223
https://doi.org/10.1145/3510003.3510221
https://www.un.org/sustainabledevelopment/
https://www.un.org/sustainabledevelopment/
https://doi.org/10.1145/3457607

Bibliography 199

[27] R. K. E. Bellamy, K. Dey, M. Hind, et al., “AI Fairness 360: An extensible
toolkit for detecting and mitigating algorithmic bias,” IBM Journal of Research
and Development, vol. 63, no. 4/5, 4:1–4:15, 2019, Conference Name: IBM Jour-
nal of Research and Development, ISSN: 0018-8646. DOI: 10.1147/jrd.2019.
2942287.

[28] S. Bird, M. Dudík, R. Edgar, et al., “Fairlearn: A toolkit for assessing and im-
proving fairness in AI,” Microsoft, Tech. Rep. Msr-tr-2020-32, 2020. [Online].
Available: https://www.microsoft.com/en-us/research/publication/
fairlearn-a-toolkit-for-assessing-and-improving-fairness-in-ai/.

[29] J. Zhang, P. Cao, D. P. Gross, et al., “On the application of multi-class classi-
fication in physical therapy recommendation,” en, Health Information Science
and Systems, vol. 1, no. 1, p. 15, 2013, ISSN: 2047-2501. DOI: 10.1186/2047-
2501-1-15.

[30] A. Baskota and Y.-K. Ng, “A graduate school recommendation system using
the multi-class support vector machine and knn approaches,” in 2018 IEEE
International Conference on Information Reuse and Integration (IRI), IEEE, 2018,
pp. 277–284.

[31] S. Caton and C. Haas, “Fairness in Machine Learning: A Survey,” ACM Com-
puting Surveys, 2023, ISSN: 0360-0300. DOI: 10.1145/3616865. eprint: 2010.
04053.

[32] T. Nguyen, M. T. Baldassarre, L. F. de Lima, et al., “From literature to practice:
Exploring fairness testing tools for the software industry adoption,” in Pro-
ceedings of the 18th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement, 2024, pp. 549–555.

[33] L. Sundberg and J. Holmström, “Democratizing artificial intelligence: How
no-code AI can leverage machine learning operations,” en, Business Horizons,
2023, ISSN: 0007-6813. DOI: 10.1016/j.bushor.2023.04.003.

[34] Z. Chen, J. M. Zhang, F. Sarro, et al., “MAAT: A novel ensemble approach to
addressing fairness and performance bugs for machine learning software,” in
Proceedings of the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ser. Esec/fse 2022, New
York, NY, USA: Association for Computing Machinery, 2022, pp. 1122–1134,
ISBN: 978-1-4503-9413-0. DOI: 10.1145/3540250.3549093.

[35] M. Hort, J. M. Zhang, F. Sarro, et al., “Fairea: A model behaviour mutation ap-
proach to benchmarking bias mitigation methods,” in Proceedings of the 29th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ser. Esec/fse 2021, Athens, Greece:
Association for Computing Machinery, 2021, 994–1006, ISBN: 9781450385626.
DOI: 10.1145/3468264.3468565.

[36] M. H. Asyrofi, Z. Yang, I. N. B. Yusuf, et al., “Biasfinder: Metamorphic test
generation to uncover bias for sentiment analysis systems,” IEEE Transactions
on Software Engineering, vol. 48, no. 12, pp. 5087–5101, 2022. DOI: 10.1109/
tse.2021.3136169.

[37] A. Shome, L. Cruz, and A. Van Deursen, “Data vs. model machine learning
fairness testing: An empirical study,” in Proceedings of the 2024 IEEE/ACM
46th International Conference on Software Engineering: Companion Proceedings,
2024, pp. 366–367.

https://doi.org/10.1147/jrd.2019.2942287
https://doi.org/10.1147/jrd.2019.2942287
https://www.microsoft.com/en-us/research/publication/fairlearn-a-toolkit-for-assessing-and-improving-fairness-in-ai/
https://www.microsoft.com/en-us/research/publication/fairlearn-a-toolkit-for-assessing-and-improving-fairness-in-ai/
https://doi.org/10.1186/2047-2501-1-15
https://doi.org/10.1186/2047-2501-1-15
https://doi.org/10.1145/3616865
2010.04053
2010.04053
https://doi.org/10.1016/j.bushor.2023.04.003
https://doi.org/10.1145/3540250.3549093
https://doi.org/10.1145/3468264.3468565
https://doi.org/10.1109/tse.2021.3136169
https://doi.org/10.1109/tse.2021.3136169

Bibliography 200

[38] A. Fan, B. Gokkaya, M. Harman, et al., Large language models for software engi-
neering: Survey and open problems, 2023. arXiv: 2310.03533.

[39] R. Schwartz, J. Dodge, N. A. Smith, et al., Green ai, 2019. arXiv: 1907.10597
[cs.CY]. [Online]. Available: https://arxiv.org/abs/1907.10597.

[40] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” in NIPS Deep Learning and Representation Learning Workshop, 2015.
[Online]. Available: http://arxiv.org/abs/1503.02531.

[41] O. Zafrir, G. Boudoukh, P. Izsak, et al., “Q8bert: Quantized 8bit bert,” in 2019
Fifth Workshop on Energy Efficient Machine Learning and Cognitive Computing -
NeurIPS Edition (EMC2-NIPS), Los Alamitos, CA, USA: IEEE Computer Soci-
ety, 2019, pp. 36–39. DOI: 10.1109/EMC2-NIPS53020.2019.00016.

[42] V. Sanh, T. Wolf, and A. M. Rush, “Movement pruning: Adaptive sparsity
by fine-tuning,” in Proceedings of the 34th International Conference on Neural
Information Processing Systems, ser. NIPS ’20, Vancouver, BC, Canada: Curran
Associates Inc., 2020, ISBN: 9781713829546.

[43] G. d’Aloisio, A. D’Angelo, A. Di Marco, et al., “Debiaser for Multiple Vari-
ables to enhance fairness in classification tasks,” en, Information Processing &
Management, vol. 60, no. 2, p. 103 226, 2023, ISSN: 0306-4573. DOI: 10.1016/j.
ipm.2022.103226.

[44] G. d’Aloisio, G. Stilo, A. Di Marco, et al., “Enhancing Fairness in Classifica-
tion Tasks with Multiple Variables: A Data-and Model-Agnostic Approach,”
in International Workshop on Algorithmic Bias in Search and Recommendation,
Springer, 2022, pp. 117–129.

[45] V. Grossi, B. Rapisarda, F. Giannotti, et al., “Data science at SoBigData: The
European research infrastructure for social mining and big data analytics,”
en, International Journal of Data Science and Analytics, vol. 6, no. 3, pp. 205–216,
2018, ISSN: 2364-4168. DOI: 10.1007/s41060-018-0126-x.

[46] G. d’Aloisio, A. Di Marco, and G. Stilo, “Democratizing quality-based ma-
chine learning development through extended feature models,” in Funda-
mental Approaches to Software Engineering, L. Lambers and S. Uchitel, Eds.,
Springer Nature Switzerland Cham, Cham: Springer Nature Switzerland, 2023,
pp. 88–110, ISBN: 978-3-031-30826-0.

[47] G. d’Aloisio, C. Di Sipio, A. Di Marco, et al., “How fair are we? from con-
ceptualization to automated assessment of fairness definitions,” 2024. DOI:
arXiv:2404.09919.

[48] S. Apel, D. Batory, C. Kästner, et al., Feature-oriented software product lines.
Springer, 2016.

[49] G. d’Aloisio, C. Di Sipio, A. Di Marco, et al., MODNESS, version 1.0.0, 2024.
[Online]. Available: https://github.com/giordanoDaloisio/MODNESS.

[50] G. d’Aloisio, C. D. Sipio, A. D. Marco, et al., Towards Early Detection of Algorith-
mic Bias from Dataset’s Bias Symptoms: An Empirical Study, version 1.0.1, 2024.
DOI: 10.5281/zenodo.14040687.

[51] F. Marzi, G. d’Aloisio, A. Di Marco, et al., “Towards a prediction of machine
learning training time to support continuous learning systems development,”
in European Conference on Software Architecture, Springer Nature Switzerland
Cham, 2023, pp. 169–184.

https://arxiv.org/abs/2310.03533
https://arxiv.org/abs/1907.10597
https://arxiv.org/abs/1907.10597
https://arxiv.org/abs/1907.10597
http://arxiv.org/abs/1503.02531
https://doi.org/10.1109/EMC2-NIPS53020.2019.00016
https://doi.org/10.1016/j.ipm.2022.103226
https://doi.org/10.1016/j.ipm.2022.103226
https://doi.org/10.1007/s41060-018-0126-x
https://doi.org/arXiv:2404.09919
https://github.com/giordanoDaloisio/MODNESS
https://doi.org/10.5281/zenodo.14040687

Bibliography 201

[52] X. Zheng, J. Jia, S. Guo, et al., “Full parameter time complexity (fptc): A method
to evaluate the running time of machine learning classifiers for land use/land
cover classification,” IEEE Journal of Selected Topics in Applied Earth Observa-
tions and Remote Sensing, vol. 14, pp. 2222–2235, 2021.

[53] S. Menard, Applied logistic regression analysis. Sage, 2002, vol. 106.

[54] S. J. Rigatti, “Random forest,” Journal of Insurance Medicine, vol. 47, no. 1,
pp. 31–39, 2017.

[55] F. Marzi, G. d’Aloisio, A. Di Marco, et al., Towards a prediction of machine learn-
ing training time to support continuous learning systems development. replication
package. [Online]. Available: https://github.com/giordanoDaloisio/QUALIFIER2023-
FPTC\%5Fevaluation.

[56] R. Rombach, A. Blattmann, D. Lorenz, et al., “High-resolution image synthe-
sis with latent diffusion models,” in CVPR, 2022, pp. 10 674–10 685.

[57] D. Podell, Z. English, K. Lacey, et al., “Sdxl: Improving latent diffusion mod-
els for high-resolution image synthesis,” arXiv preprint arXiv:2307.01952, 2023.

[58] P. Esser, S. Kulal, A. Blattmann, et al., “Scaling rectified flow transformers
for high-resolution image synthesis,” in Forty-first International Conference on
Machine Learning, 2024.

[59] A. Valyaeva, AI Image Statistics for 2024: How Much Content Was Created by AI,
en-US, 2023. [Online]. Available: https://journal.everypixel.com/ai-
image-statistics (visited on 11/14/2024).

[60] M. Sami, A. Sami, and P. Barclay, “A case study of fairness in generated
images of Large Language Models for Software Engineering tasks,” in 2023
IEEE International Conference on Software Maintenance and Evolution (ICSME),
ISSN: 2576-3148, 2023, pp. 391–396. DOI: 10.1109/ICSME58846.2023.00051.

[61] C. Treude and H. Hata, “She Elicits Requirements and He Tests: Software En-
gineering Gender Bias in Large Language Models,” in 2023 IEEE/ACM 20th
International Conference on Mining Software Repositories (MSR), ISSN: 2574-3864,
2023, pp. 624–629. DOI: 10.1109/MSR59073.2023.00088.

[62] T. Fadahunsi, G. d’Aloisio, A. Di Marco, and F. Sarro, SD Bias Analysis Replica-
tion package, 2024. [Online]. Available: https://anonymous.4open.science/
r/sd-bias/README.md.

[63] A. Ait, J. L. C. Izquierdo, and J. Cabot, “HFCommunity: A Tool to Analyze
the Hugging Face Hub Community,” in 2023 IEEE International Conference
on Software Analysis, Evolution and Reengineering (SANER), ISSN: 2640-7574,
2023, pp. 728–732. DOI: 10.1109/SANER56733.2023.00080.

[64] B. Johnson and Y. Brun, “Fairkit-learn: A fairness evaluation and compari-
son toolkit,” in 2022 IEEE/ACM 44th International Conference on Software En-
gineering: Companion Proceedings (ICSE-Companion), ser. ICSE ’22, Pittsburgh,
Pennsylvania: Association for Computing Machinery, 2022, pp. 70–74, ISBN:
978-1-4503-9223-5. DOI: 10.1145/3510454.3516830.

[65] C. Di Sipio, G. d’Aloisio, A. Di Marco, and D. Di Ruscio, HF Fairness Study,
version 1.0.1, 2024. [Online]. Available: https://anonymous.4open.science/
r/HF-Fairness-Study-F16E/README.md.

https://github.com/giordanoDaloisio/QUALIFIER2023-FPTC\%5Fevaluation
https://github.com/giordanoDaloisio/QUALIFIER2023-FPTC\%5Fevaluation
https://journal.everypixel.com/ai-image-statistics
https://journal.everypixel.com/ai-image-statistics
https://doi.org/10.1109/ICSME58846.2023.00051
https://doi.org/10.1109/MSR59073.2023.00088
https://anonymous.4open.science/r/sd-bias/README.md
https://anonymous.4open.science/r/sd-bias/README.md
https://doi.org/10.1109/SANER56733.2023.00080
https://doi.org/10.1145/3510454.3516830
https://anonymous.4open.science/r/HF-Fairness-Study-F16E/README.md
https://anonymous.4open.science/r/HF-Fairness-Study-F16E/README.md

Bibliography 202

[66] Z. Feng, D. Guo, D. Tang, et al., “CodeBERT: A pre-trained model for pro-
gramming and natural languages,” in Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, T. Cohn, Y. He, and Y. Liu, Eds., Online: Asso-
ciation for Computational Linguistics, 2020, pp. 1536–1547. DOI: 10.18653/
v1/2020.findings-emnlp.139.

[67] A. Gholami, S. Kim, Z. Dong, et al., “A survey of quantization methods for
efficient neural network inference,” in Low-Power Computer Vision, Chapman
and Hall/CRC, 2022, pp. 291–326.

[68] M. A. Gordon, K. Duh, and N. Andrews, Compressing BERT: Studying the Ef-
fects of Weight Pruning on Transfer Learning, en, 2020. [Online]. Available: http:
//arxiv.org/abs/2002.08307 (visited on 09/22/2024).

[69] G. d’Aloisio, L. Traini, F. Sarro, and A. Di Marco, On the compression of language
models for code: An empirical study on codebert, version 0.1, 2024. DOI: 10.5281/
zenodo.14357478.

[70] J. Gong, S. Li, G. d’Aloisio, et al., “Greenstableyolo: Optimizing inference time
and image quality of text-to-image generation,” in International Symposium on
Search Based Software Engineering, Springer Nature Switzerland Cham, 2024,
pp. 70–76.

[71] K. Deb, S. Agrawal, A. Pratap, et al., “A fast and elitist multiobjective genetic
algorithm: NSGA-II,” IEEE Trans. Evol. Comput., vol. 6, no. 2, pp. 182–197,
2002.

[72] J. Gong, S. Li, G. d’Aloisio, et al., Greenstableyolo replication package, 2024. [On-
line]. Available: https://github.com/gjz78910/GreenStableYolo.

[73] M. Assante, L. Candela, D. Castelli, et al., “Enacting open science by d4science,”
Future Generation Computer Systems, vol. 101, pp. 555–563, 2019.

[74] K. A. Austin, C. M. Christopher, and D. Dickerson, “Will I Pass the Bar Exam:
Predicting Student Success Using LSAT Scores and Law School Performance,”
HofstrA l. rev., vol. 45, p. 753, 2016, Publisher: HeinOnline.

[75] P. T. Nguyen, R. Rubei, J. D. Rocco, et al., Dealing with popularity bias in recom-
mender systems for third-party libraries: How far are we? 2023. arXiv: 2304.10409
[cs.SE].

[76] S. Udeshi, P. Arora, and S. Chattopadhyay, “Automated directed fairness
testing,” in Proceedings of the 33rd ACM/IEEE International Conference on Au-
tomated Software Engineering, ser. Ase ’18, Montpellier, France: Association for
Computing Machinery, 2018, 98–108, ISBN: 9781450359375. DOI: 10.1145/
3238147.3238165.

[77] M. Hort, Z. Chen, J. M. Zhang, et al., “Bias Mitigation for Machine Learning
Classifiers: A Comprehensive Survey,” en, ACM Journal on Responsible Com-
puting, p. 3 631 326, 2023, ISSN: 2832-0565. DOI: 10.1145/3631326.

[78] A. Castelnovo, R. Crupi, G. Greco, et al., “A clarification of the nuances in the
fairness metrics landscape,” Scientific Reports, vol. 12, no. 1, p. 4209, 2022.

[79] S. Majumder, J. Chakraborty, G. R. Bai, et al., “Fair enough: Searching for
sufficient measures of fairness,” ACM Transactions on Software Engineering and
Methodology, vol. 32, no. 6, pp. 1–22, 2023.

https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
http://arxiv.org/abs/2002.08307
http://arxiv.org/abs/2002.08307
https://doi.org/10.5281/zenodo.14357478
https://doi.org/10.5281/zenodo.14357478
https://github.com/gjz78910/GreenStableYolo
https://arxiv.org/abs/2304.10409
https://arxiv.org/abs/2304.10409
https://doi.org/10.1145/3238147.3238165
https://doi.org/10.1145/3238147.3238165
https://doi.org/10.1145/3631326

Bibliography 203

[80] Z. Chen, J. M. Zhang, F. Sarro, et al., “Fairness improvement with multiple
protected attributes: How far are we?” eng, in Proceedings of the IEEE/ACM
46th International Conference on Software Engineering, ser. ICSE ’24, Lisbon, Por-
tugal: Association for Computing Machinery, 2024, ISBN: 9798400702174. DOI:
10.1145/3597503.3639083.

[81] C. Dwork, M. Hardt, T. Pitassi, et al., “Fairness through awareness,” in Pro-
ceedings of the 3rd Innovations in Theoretical Computer Science Conference, ser. Itcs
’12, New York, NY, USA: Association for Computing Machinery, 2012, pp. 214–
226, ISBN: 978-1-4503-1115-1. DOI: 10.1145/2090236.2090255. (visited on
12/16/2021).

[82] M. Feldman, S. A. Friedler, J. Moeller, et al., “Certifying and Removing Dis-
parate Impact,” en, in Proceedings of the 21th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, Sydney NSW Australia: Acm,
2015, pp. 259–268, ISBN: 978-1-4503-3664-2. DOI: 10.1145/2783258.2783311.

[83] M. Hardt, E. Price, E. Price, et al., “Equality of Opportunity in Supervised
Learning,” in Advances in Neural Information Processing Systems, vol. 29, Cur-
ran Associates, Inc., 2016. [Online]. Available: https://proceedings.neurips.
cc/paper/2016/hash/9d2682367c3935defcb1f9e247a97c0d-Abstract.html
(visited on 01/27/2022).

[84] P. T. Nguyen, J. Di Rocco, D. Di Ruscio, et al., “CrossRec: Supporting Software
Developers by Recommending Third-party Libraries,” Journal of Systems and
Software, p. 110 460, 2019, ISSN: 0164-1212. DOI: https://doi.org/10.1016/
j.jss.2019.110460.

[85] B. d’Alessandro, C. O’Neil, and T. LaGatta, “Conscientious classification: A
data scientist’s guide to discrimination-aware classification,” Big data, vol. 5,
no. 2, pp. 120–134, 2017.

[86] F. Kamiran and T. Calders, “Data preprocessing techniques for classification
without discrimination,” en, Knowledge and Information Systems, vol. 33, no. 1,
pp. 1–33, 2012, ISSN: 0219-1377, 0219-3116. DOI: 10.1007/s10115-011-0463-
8.

[87] C. Denis, R. Elie, M. Hebiri, et al., “Fairness guarantee in multi-class classifi-
cation,” arXiv:2109.13642 [math, stat], 2021. (visited on 11/17/2021).

[88] A. Agarwal, A. Beygelzimer, M. Dudik, et al., “A reductions approach to
fair classification,” in Proceedings of the 35th International Conference on Ma-
chine Learning, J. Dy and A. Krause, Eds., ser. Proceedings of Machine Learn-
ing Research, vol. 80, PMLR, 2018, pp. 60–69. [Online]. Available: https://
proceedings.mlr.press/v80/agarwal18a.html.

[89] P. Putzel and S. Lee, “Blackbox Post-Processing for Multiclass Fairness,” 2022.
[Online]. Available: http://arxiv.org/abs/2201.04461 (visited on 01/27/2022).

[90] D. H. Wolpert, What does dinner cost? en, 1999. [Online]. Available: http://
www.no-free-lunch.org/coev.pdf.

[91] J. Kivinen and M. K. Warmuth, “Exponentiated gradient versus gradient de-
scent for linear predictors,” information and computation, vol. 132, no. 1, pp. 1–
63, 1997.

[92] D. Pedreschi, S. Ruggieri, and F. Turini, “Measuring discrimination in socially-
sensitive decision records,” in Proceedings of the 2009 SIAM international con-
ference on data mining, SIAM, 2009, pp. 581–592.

https://doi.org/10.1145/3597503.3639083
https://doi.org/10.1145/2090236.2090255
https://doi.org/10.1145/2783258.2783311
https://proceedings.neurips.cc/paper/2016/hash/9d2682367c3935defcb1f9e247a97c0d-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/9d2682367c3935defcb1f9e247a97c0d-Abstract.html
https://doi.org/https://doi.org/10.1016/j.jss.2019.110460
https://doi.org/https://doi.org/10.1016/j.jss.2019.110460
https://doi.org/10.1007/s10115-011-0463-8
https://doi.org/10.1007/s10115-011-0463-8
https://proceedings.mlr.press/v80/agarwal18a.html
https://proceedings.mlr.press/v80/agarwal18a.html
http://arxiv.org/abs/2201.04461
http://www.no-free-lunch.org/coev.pdf
http://www.no-free-lunch.org/coev.pdf

Bibliography 204

[93] F. Kamiran, A. Karim, and X. Zhang, “Decision theory for discrimination-
aware classification,” in 2012 IEEE 12th international conference on data mining,
IEEE, 2012, pp. 924–929.

[94] H. Zhang, M. A. Babar, and P. Tell, “Identifying relevant studies in software
engineering,” Inf. Softw. Technol., vol. 53, no. 6, 625–637, 2011, ISSN: 0950-5849.
DOI: 10.1016/j.infsof.2010.12.010.

[95] R. Angell, B. Johnson, Y. Brun, et al., “Themis: Automatically testing soft-
ware for discrimination,” in Proceedings of the 2018 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ser. Esec/fse 2018, New York, NY, USA: Association
for Computing Machinery, 2018, pp. 871–875, ISBN: 978-1-4503-5573-5. DOI:
10.1145/3236024.3264590. (visited on 04/04/2023).

[96] A. Sharma and H. Wehrheim, “Testing Machine Learning Algorithms for Bal-
anced Data Usage,” in 2019 12th IEEE Conference on Software Testing, Validation
and Verification (ICST), Issn: 2159-4848, 2019, pp. 125–135. DOI: 10.1109/icst.
2019.00022.

[97] P. Zhang, J. Wang, J. Sun, et al., “Automatic Fairness Testing of Neural Classi-
fiers Through Adversarial Sampling,” IEEE Transactions on Software Engineer-
ing, vol. 48, no. 9, pp. 3593–3612, 2022, Conference Name: IEEE Transactions
on Software Engineering, ISSN: 1939-3520. DOI: 10.1109/tse.2021.3101478.

[98] J. Chakraborty, S. Majumder, Z. Yu, et al., “Fairway: A way to build fair ML
software,” in Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineer-
ing, ser. Esec/fse 2020, New York, NY, USA: Association for Computing Ma-
chinery, 2020, pp. 654–665, ISBN: 978-1-4503-7043-1. DOI: 10.1145/3368089.
3409697.

[99] Y. Tian, Z. Zhong, V. Ordonez, et al., “Testing dnn image classifiers for con-
fusion & bias errors,” in Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering, ser. Icse ’20, Seoul, South Korea: Associ-
ation for Computing Machinery, 2020, 1122–1134, ISBN: 9781450371216. DOI:
10.1145/3377811.3380400.

[100] A. Aggarwal, S. Shaikh, S. Hans, et al., “Testing Framework for Black-box AI
Models,” in 2021 IEEE/ACM 43rd International Conference on Software Engineer-
ing: Companion Proceedings (ICSE-Companion), Issn: 2574-1926, 2021, pp. 81–
84. DOI: 10.1109/ICSE-Companion52605.2021.00041.

[101] L. Zhang, Y. Zhang, and M. Zhang, “Efficient white-box fairness testing through
gradient search,” in Proceedings of the 30th ACM SIGSOFT International Sym-
posium on Software Testing and Analysis, 2021, pp. 103–114.

[102] J. Chakraborty, S. Majumder, and T. Menzies, “Bias in machine learning soft-
ware: Why? how? what to do?” In Proceedings of the 29th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ser. Esec/fse 2021, Athens, Greece: Association for
Computing Machinery, 2021, 429–440, ISBN: 9781450385626. DOI: 10.1145/
3468264.3468537.

https://doi.org/10.1016/j.infsof.2010.12.010
https://doi.org/10.1145/3236024.3264590
https://doi.org/10.1109/icst.2019.00022
https://doi.org/10.1109/icst.2019.00022
https://doi.org/10.1109/tse.2021.3101478
https://doi.org/10.1145/3368089.3409697
https://doi.org/10.1145/3368089.3409697
https://doi.org/10.1145/3377811.3380400
https://doi.org/10.1109/ICSE-Companion52605.2021.00041
https://doi.org/10.1145/3468264.3468537
https://doi.org/10.1145/3468264.3468537

Bibliography 205

[103] S. Biswas and H. Rajan, “Fair preprocessing: Towards understanding com-
positional fairness of data transformers in machine learning pipeline,” in
Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, ser. Es-
ec/fse 2021, New York, NY, USA: Association for Computing Machinery,
2021, pp. 981–993, ISBN: 978-1-4503-8562-6. DOI: 10.1145/3468264.3468536.

[104] S. Tizpaz-Niari, A. Kumar, G. Tan, et al., “Fairness-aware configuration of
machine learning libraries,” in Proceedings of the 44th International Conference
on Software Engineering, ser. Icse ’22, Pittsburgh, Pennsylvania: Association for
Computing Machinery, 2022, 909–920, ISBN: 9781450392211. DOI: 10.1145/
3510003.3510202.

[105] K. Peng, J. Chakraborty, and T. Menzies, “FairMask: Better Fairness via Model-
Based Rebalancing of Protected Attributes,” IEEE Transactions on Software En-
gineering, vol. 49, no. 4, pp. 2426–2439, 2023, Conference Name: IEEE Trans-
actions on Software Engineering, ISSN: 1939-3520. DOI: 10.1109/tse.2022.
3220713.

[106] M. Fan, W. Wei, W. Jin, et al., “Explanation-guided fairness testing through ge-
netic algorithm,” in Proceedings of the 44th International Conference on Software
Engineering, ser. Icse ’22, Pittsburgh, Pennsylvania: Association for Comput-
ing Machinery, 2022, 871–882, ISBN: 9781450392211. DOI: 10.1145/3510003.
3510137.

[107] E. Soremekun, S. Udeshi, and S. Chattopadhyay, “Astraea: Grammar-Based
Fairness Testing,” IEEE Transactions on Software Engineering, vol. 48, no. 12,
pp. 5188–5211, 2022, Conference Name: IEEE Transactions on Software Engi-
neering, ISSN: 1939-3520. DOI: 10.1109/tse.2022.3141758.

[108] A. Perera, A. Aleti, C. Tantithamthavorn, et al., “Search-based fairness testing
for regression-based machine learning systems,” en, Empirical Software Engi-
neering, vol. 27, no. 3, p. 79, 2022, ISSN: 1573-7616. DOI: 10.1007/s10664-022-
10116-7. (visited on 04/04/2023).

[109] H. Zheng, Z. Chen, T. Du, et al., “Neuronfair: Interpretable white-box fairness
testing through biased neuron identification,” in 2022 IEEE/ACM 44th Inter-
national Conference on Software Engineering (ICSE), 2022, pp. 1519–1531. DOI:
10.1145/3510003.3510123.

[110] Y. Li, L. Meng, L. Chen, et al., “Training data debugging for the fairness of
machine learning software,” in Proceedings of the 44th International Conference
on Software Engineering, ser. Icse ’22, Pittsburgh, Pennsylvania: Association
for Computing Machinery, 2022, 2215–2227, ISBN: 9781450392211. DOI: 10.
1145/3510003.3510091.

[111] J. Wang, Y. Yang, S. Wang, et al., “Context- and Fairness-Aware In-Process
Crowdworker Recommendation,” ACM Transactions on Software Engineering
and Methodology, vol. 31, no. 3, 35:1–35:31, 2022, ISSN: 1049-331x. DOI: 10.
1145/3487571. (visited on 04/04/2023).

[112] A. Yohannis and D. Kolovos, “Towards model-based bias mitigation in ma-
chine learning,” in Proceedings of the 25th International Conference on Model
Driven Engineering Languages and Systems, ser. Models ’22, Montreal, Quebec,
Canada: Association for Computing Machinery, 2022, 143–153, ISBN: 9781450394666.
DOI: 10.1145/3550355.3552401.

https://doi.org/10.1145/3468264.3468536
https://doi.org/10.1145/3510003.3510202
https://doi.org/10.1145/3510003.3510202
https://doi.org/10.1109/tse.2022.3220713
https://doi.org/10.1109/tse.2022.3220713
https://doi.org/10.1145/3510003.3510137
https://doi.org/10.1145/3510003.3510137
https://doi.org/10.1109/tse.2022.3141758
https://doi.org/10.1007/s10664-022-10116-7
https://doi.org/10.1007/s10664-022-10116-7
https://doi.org/10.1145/3510003.3510123
https://doi.org/10.1145/3510003.3510091
https://doi.org/10.1145/3510003.3510091
https://doi.org/10.1145/3487571
https://doi.org/10.1145/3487571
https://doi.org/10.1145/3550355.3552401

Bibliography 206

[113] S. S. Rajan, S. Udeshi, and S. Chattopadhyay, “AequeVox: Automated Fair-
ness Testing of Speech Recognition Systems,” en, in Fundamental Approaches
to Software Engineering, E. B. Johnsen and M. Wimmer, Eds., Cham: Springer
International Publishing, 2022, pp. 245–267, ISBN: 978-3-030-99429-7. DOI: 10.
1007/978-3-030-99429-7_14.

[114] S. Biswas and H. Rajan, “Fairify: Fairness Verification of Neural Networks,”
in Proceedings of the 45th International Conference on Software Engineering, ser. ICSE
’23, Melbourne, Victoria, Australia: IEEE Press, 2023, pp. 1546–1558, ISBN:
978-1-66545-701-9. DOI: 10.1109/ICSE48619.2023.00134.

[115] V. Monjezi, A. Trivedi, G. Tan, et al., “Information-Theoretic Testing and De-
bugging of Fairness Defects in Deep Neural Networks,” in Proceedings of the
45th International Conference on Software Engineering, ser. ICSE ’23, Melbourne,
Victoria, Australia: IEEE Press, 2023, pp. 1571–1582, ISBN: 978-1-66545-701-9.
DOI: 10.1109/ICSE48619.2023.00136. (visited on 05/06/2024).

[116] R. Berk, H. Heidari, S. Jabbari, et al., “Fairness in Criminal Justice Risk As-
sessments: The State of the Art,” vol. 50, no. 1, pp. 3–44, 2018, Publisher:
SAGE PublicationsSage CA: Los Angeles, CA, ISSN: 15528294. DOI: 10.1177/
0049124118782533.

[117] L. Oneto, M. Doninini, A. Elders, et al., “Taking Advantage of Multitask Learn-
ing for Fair Classification,” in Proceedings of the 2019 AAAI/ACM Conference
on AI, Ethics, and Society, ser. AIES ’19, New York, NY, USA: Association
for Computing Machinery, 2019, pp. 227–237, ISBN: 978-1-4503-6324-2. DOI:
10.1145/3306618.3314255.

[118] M. Openja, G. Laberge, and F. Khomh, “Detection and evaluation of bias-
inducing features in machine learning,” en, Empirical Software Engineering,
vol. 29, no. 1, p. 22, 2023, ISSN: 1573-7616. DOI: 10.1007/s10664-023-10409-
5.

[119] C. Ferrara, F. Casillo, and C. Gravino, “ReFAIR: Toward a Context-Aware
Recommenderfor Fairness Requirements Engineering,” en, 2024.

[120] B. Salimi, L. Rodriguez, B. Howe, et al., “Interventional Fairness: Causal Database
Repair for Algorithmic Fairness,” en, in Proceedings of the 2019 International
Conference on Management of Data, Amsterdam Netherlands: ACM, 2019, pp. 793–
810, ISBN: 978-1-4503-5643-5. DOI: 10.1145/3299869.3319901.

[121] S. Galhotra, K. Shanmugam, P. Sattigeri, et al., “Causal Feature Selection for
Algorithmic Fairness,” in Proceedings of the 2022 International Conference on
Management of Data, ser. SIGMOD ’22, New York, NY, USA: Association for
Computing Machinery, 2022, pp. 276–285, ISBN: 978-1-4503-9249-5. DOI: 10.
1145/3514221.3517909.

[122] M. Mecati, A. Vetrò, and M. Torchiano, “Detecting Discrimination Risk in Au-
tomated Decision-Making Systems with Balance Measures on Input Data,” in
2021 IEEE International Conference on Big Data (Big Data), 2021, pp. 4287–4296.
DOI: 10.1109/BigData52589.2021.9671443.

[123] W. Yik, L. Serafini, T. Lindsey, et al., “Identifying Bias in Data Using Two-
Distribution Hypothesis Tests,” in Proceedings of the 2022 AAAI/ACM Confer-
ence on AI, Ethics, and Society, ser. AIES ’22, New York, NY, USA: Association
for Computing Machinery, 2022, pp. 831–844, ISBN: 978-1-4503-9247-1. DOI:
10.1145/3514094.3534169.

https://doi.org/10.1007/978-3-030-99429-7_14
https://doi.org/10.1007/978-3-030-99429-7_14
https://doi.org/10.1109/ICSE48619.2023.00134
https://doi.org/10.1109/ICSE48619.2023.00136
https://doi.org/10.1177/0049124118782533
https://doi.org/10.1177/0049124118782533
https://doi.org/10.1145/3306618.3314255
https://doi.org/10.1007/s10664-023-10409-5
https://doi.org/10.1007/s10664-023-10409-5
https://doi.org/10.1145/3299869.3319901
https://doi.org/10.1145/3514221.3517909
https://doi.org/10.1145/3514221.3517909
https://doi.org/10.1109/BigData52589.2021.9671443
https://doi.org/10.1145/3514094.3534169

Bibliography 207

[124] R. Constantin, M. Dück, A. Alexandrov, et al., “How Do Algorithmic Fair-
ness Metrics Align with Human Judgement? A Mixed-Initiative System for
Contextualized Fairness Assessment,” in 2022 IEEE Workshop on TRust and
EXpertise in Visual Analytics (TREX), 2022, pp. 1–7. DOI: 10.1109/TREX57753.
2022.00005.

[125] J. M. Zhang and M. Harman, “"Ignorance and Prejudice" in Software Fair-
ness,” in 2021 IEEE/ACM 43rd International Conference on Software Engineering
(ICSE), 2021, pp. 1436–1447. DOI: 10.1109/ICSE43902.2021.00129.

[126] C. Du and T. Chen, “Contexts matter: An empirical study on contextual influ-
ence in fairness testing for deep learning systems,” in Proceedings of the 18th
ACM/IEEE International Symposium on Empirical Software Engineering and Mea-
surement, ser. ESEM ’24, Barcelona, Spain: Association for Computing Ma-
chinery, 2024, 107–118, ISBN: 9798400710476. DOI: 10.1145/3674805.3686673.

[127] F. Bianchi, P. Kalluri, E. Durmus, et al., “Easily accessible text-to-image gen-
eration amplifies demographic stereotypes at large scale,” in Proceedings of
the 2023 ACM Conference on Fairness, Accountability, and Transparency, 2023,
pp. 1493–1504.

[128] R. Naik and B. Nushi, “Social biases through the text-to-image generation
lens,” in Proceedings of the 2023 AAAI/ACM Conference on AI, Ethics, and Soci-
ety, 2023, pp. 786–808.

[129] L. Sun, M. Wei, Y. Sun, et al., “Smiling women pitching down: Auditing repre-
sentational and presentational gender biases in image-generative ai,” Journal
of Computer-Mediated Communication, vol. 29, no. 1, zmad045, 2024.

[130] S. Luccioni, C. Akiki, M. Mitchell, et al., “Stable Bias: Evaluating Societal Rep-
resentations in Diffusion Models,” en, Advances in Neural Information Process-
ing Systems, vol. 36, pp. 56 338–56 351, 2023. (visited on 06/20/2024).

[131] Y. Wan, A. Subramonian, A. Ovalle, et al., “Survey of bias in text-to-image
generation: Definition, evaluation, and mitigation,” arXiv preprint arXiv:2404.01030,
2024.

[132] J. Castaño, S. Martínez-Fernández, X. Franch, et al., Analyzing the Evolution
and Maintenance of ML Models on Hugging Face, 2023. DOI: 10.48550/arXiv.
2311.13380.

[133] L. Gong, J. Zhang, M. Wei, et al., “What Is the Intended Usage Context of
This Model? An Exploratory Study of Pre-Trained Models on Various Model
Repositories,” ACM Transactions on Software Engineering and Methodology, vol. 32,
no. 3, 69:1–69:57, 2023, ISSN: 1049-331X. DOI: 10.1145/3569934.

[134] C. Di Sipio, R. Rubei, J. Di Rocco, et al., “Automated categorization of pre-
trained models in software engineering: A case study with a hugging face
dataset,” in Proceedings of the 28th International Conference on Evaluation and As-
sessment in Software Engineering, ser. EASE ’24, Salerno, Italy: Association for
Computing Machinery, 2024, 351–356, ISBN: 9798400717017. DOI: 10.1145/
3661167.3661215.

[135] D. Montes, P. Peerapatanapokin, J. Schultz, et al., “Discrepancies among pre-
trained deep neural networks: A new threat to model zoo reliability,” in Pro-
ceedings of the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ser. ESEC/FSE 2022,
New York, NY, USA: Association for Computing Machinery, 2022, pp. 1605–
1609, ISBN: 978-1-4503-9413-0. DOI: 10.1145/3540250.3560881.

https://doi.org/10.1109/TREX57753.2022.00005
https://doi.org/10.1109/TREX57753.2022.00005
https://doi.org/10.1109/ICSE43902.2021.00129
https://doi.org/10.1145/3674805.3686673
https://doi.org/10.48550/arXiv.2311.13380
https://doi.org/10.48550/arXiv.2311.13380
https://doi.org/10.1145/3569934
https://doi.org/10.1145/3661167.3661215
https://doi.org/10.1145/3661167.3661215
https://doi.org/10.1145/3540250.3560881

Bibliography 208

[136] F. Pepe, V. Nardone, A. Mastropaolo, et al., “How do hugging face mod-
els document datasets, bias, and licenses? an empirical study,” in Proceed-
ings of the 32nd IEEE/ACM International Conference on Program Comprehension,
ser. ICPC ’24, Lisbon, Portugal: Association for Computing Machinery, 2024,
370–381, ISBN: 9798400705861. DOI: 10.1145/3643916.3644412.

[137] H. Gao, M. Zahedi, C. Treude, et al., “Documenting ethical considerations
in open source ai models,” in Proceedings of the 18th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement, ser. ESEM ’24,
Barcelona, Spain: Association for Computing Machinery, 2024, 177–188, ISBN:
9798400710476. DOI: 10.1145/3674805.3686679.

[138] N. Yanes, A. M. Mostafa, M. Ezz, et al., “A machine learning-based recom-
mender system for improving students learning experiences,” IEEE Access,
vol. 8, pp. 201 218–201 235, 2020.

[139] C. Jiang, Y. Liu, Y. Ding, et al., “Capturing helpful reviews from social me-
dia for product quality improvement: A multi-class classification approach,”
International Journal of Production Research, vol. 55, no. 12, pp. 3528–3541, 2017.

[140] N. V. Chawla, K. W. Bowyer, L. O. Hall, et al., “Smote: Synthetic minor-
ity over-sampling technique,” Journal of artificial intelligence research, vol. 16,
pp. 321–357, 2002.

[141] H. He, Y. Bai, E. A. Garcia, et al., “Adasyn: Adaptive synthetic sampling ap-
proach for imbalanced learning,” in 2008 IEEE international joint conference on
neural networks (IEEE world congress on computational intelligence), IEEE, 2008,
pp. 1322–1328.

[142] J. H. Friedman, “Stochastic gradient boosting,” Computational statistics & data
analysis, vol. 38, no. 4, pp. 367–378, 2002, Publisher: Elsevier.

[143] W. S. Noble, “What is a support vector machine?” Nature biotechnology, vol. 24,
no. 12, pp. 1565–1567, 2006, Publisher: Nature Publishing Group.

[144] M. T. Hagan, H. B. Demuth, and M. Beale, Neural network design. PWS Pub-
lishing Co., 1997.

[145] F. Pedregosa, G. Varoquaux, A. Gramfort, et al., “Scikit-learn: Machine learn-
ing in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–2830,
2011.

[146] S. Radovanović, A. Petrović, B. Delibašić, et al., “A fair classifier chain for
multi-label bank marketing strategy classification,” en, International Transac-
tions in Operational Research, 2021, ISSN: 1475-3995. DOI: 10.1111/itor.13059.
(visited on 12/01/2021).

[147] P. Domingos and M. Pazzani, “On the Optimality of the Simple Bayesian
Classifier under Zero-One Loss,” en, Machine Learning, vol. 29, no. 2, pp. 103–
130, 1997, ISSN: 1573-0565. DOI: 10.1023/A:1007413511361.

[148] G. Rosenfield and K. Fitzpatrick-Lins, “A coefficient of agreement as a mea-
sure of thematic classification accuracy.,” Photogrammetric Engineering and Re-
mote Sensing, vol. 52, no. 2, pp. 223–227, 1986. [Online]. Available: http://
pubs.er.usgs.gov/publication/70014667.

[149] W. F. Ferger, “The nature and use of the harmonic mean,” Journal of the Ameri-
can Statistical Association, vol. 26, no. 173, 36 – 40, 1931. DOI: 10.1080/01621459.
1931.10503148.

https://doi.org/10.1145/3643916.3644412
https://doi.org/10.1145/3674805.3686679
https://doi.org/10.1111/itor.13059
https://doi.org/10.1023/A:1007413511361
http://pubs.er.usgs.gov/publication/70014667
http://pubs.er.usgs.gov/publication/70014667
https://doi.org/10.1080/01621459.1931.10503148
https://doi.org/10.1080/01621459.1931.10503148

Bibliography 209

[150] Fairlearn, Fairlearn documentation, 2022. [Online]. Available: https://fairlearn.
org/main/faq.html.

[151] P. Refaeilzadeh, L. Tang, and H. Liu, “Cross-Validation,” in Encyclopedia of
Database Systems, L. LIU and M. T. ÖZSU, Eds., vol. 5, New York, NY: Springer
New York, 2016, pp. 1–7, ISBN: 978-1-4899-7993-3. DOI: 10.1007/978-1-4899-
7993-3_565-2.

[152] R. Kohavi et al., “Scaling up the accuracy of naive-bayes classifiers: A decision-
tree hybrid.,” en, in Kdd, vol. 96, 1996, pp. 202–207.

[153] J. Angwin, J. Larson, S. Mattu, et al., “Machine bias,” ProPublica, May, vol. 23,
no. 2016, pp. 139–159, 2016.

[154] H. Hofmann, Statlog (German Credit Data), UCI Machine Learning Repository,
DOI: https://doi.org/10.24432/C5NC77, 1994.

[155] T.-S. Lim, W.-Y. Loh, and Y.-S. Shih, “A comparison of prediction accuracy,
complexity, and training time of thirty-three old and new classification algo-
rithms,” Machine learning, vol. 40, no. 3, pp. 203–228, 2000, Publisher: Springer.

[156] M. Redmond and A. Baveja, “A data-driven software tool for enabling coop-
erative information sharing among police departments,” European Journal of
Operational Research, vol. 141, no. 3, pp. 660–678, 2002, Publisher: Elsevier.

[157] T. Calders, A. Karim, F. Kamiran, et al., “Controlling Attribute Effect in Linear
Regression,” in 2013 IEEE 13th International Conference on Data Mining, ISSN:
2374-8486, IEEE, 2013, pp. 71–80. DOI: 10.1109/ICDM.2013.114.

[158] E. Fehrman, A. K. Muhammad, E. M. Mirkes, et al., “The Five Factor Model of
Personality and Evaluation of Drug Consumption Risk,” en, in Data Science,
F. Palumbo, A. Montanari, and M. Vichi, Eds., ser. Studies in Classification,
Data Analysis, and Knowledge Organization, Cham: Springer International
Publishing, 2017, pp. 231–242, ISBN: 978-3-319-55723-6. DOI: 10.1007/978-3-
319-55723-6_18.

[159] A. Tsanas, M. Little, P. McSharry, et al., “Accurate telemonitoring of Parkin-
son’s disease progression by non-invasive speech tests,” en, Nature Preced-
ings, pp. 1–1, 2009, Publisher: Nature Publishing Group, ISSN: 1756-0357. DOI:
10.1038/npre.2009.3920.1.

[160] P. Cortez, A. Cerdeira, F. Almeida, et al., “Modeling wine preferences by data
mining from physicochemical properties,” Decision support systems, vol. 47,
no. 4, pp. 547–553, 2009, Publisher: Elsevier.

[161] J. H. McDonald, One-way ANOVA. sparky house publishing Baltimore, MD,
2009, vol. 2.

[162] D. Krstinić, M. Braović, L. Šerić, et al., “Multi-label classifier performance
evaluation with confusion matrix,” Comput Sci Inf Technol, vol. 10, pp. 1–14,
2020.

[163] J. Pineau, P. Vincent-Lamarre, K. Sinha, et al., “Improving reproducibility in
machine learning research: A report from the neurips 2019 reproducibility
program,” Journal of Machine Learning Research, vol. 22, 2021.

[164] M. Brambilla, J. Cabot, and M. Wimmer, Model-driven software engineering in
practice. Morgan & Claypool Publishers, 2017.

https://fairlearn.org/main/faq.html
https://fairlearn.org/main/faq.html
https://doi.org/10.1007/978-1-4899-7993-3_565-2
https://doi.org/10.1007/978-1-4899-7993-3_565-2
https://doi.org/10.1109/ICDM.2013.114
https://doi.org/10.1007/978-3-319-55723-6_18
https://doi.org/10.1007/978-3-319-55723-6_18
https://doi.org/10.1038/npre.2009.3920.1

Bibliography 210

[165] D. Steinberg, F. Budinsky, M. Paternostro, et al., EMF: Eclipse Modeling Frame-
work, 2nd Edition, 2nd. Addison-Wesley Professional., 2008, ISBN: 978-0-321-
33188-5. [Online]. Available: https : / / www . informit . com / store / emf -
eclipse-modeling-framework-9780321331885 (visited on 05/10/2022).

[166] L. Bettini, Implementing domain-specific languages with Xtext and Xtend. Packt
Publishing Ltd, 2016.

[167] J. Musset, É. Juliot, S. Lacrampe, et al., “Acceleo user guide,” See also http://acceleo.
org/doc/obeo/en/acceleo-2.6-user-guide. pdf, vol. 2, p. 157, 2006.

[168] J. A. Galindo, D. Benavides, P. Trinidad, et al., “Automated analysis of feature
models: Quo vadis?” en, Computing, vol. 101, no. 5, pp. 387–433, 2019, ISSN:
0010-485X, 1436-5057. DOI: 10.1007/s00607-018-0646-1.

[169] K. C. Kang, S. G. Cohen, J. A. Hess, et al., “Feature-oriented domain anal-
ysis (foda) feasibility study,” Carnegie-Mellon Univ Pittsburgh Pa Software
Engineering Inst, Tech. Rep., 1990.

[170] D. Benavides, S. Segura, and A. Ruiz-Cortés, “Automated analysis of feature
models 20 years later: A literature review,” en, Information Systems, vol. 35,
no. 6, pp. 615–636, 2010, ISSN: 0306-4379. DOI: 10.1016/j.is.2010.01.001.

[171] C. Di Sipio, J. Di Rocco, D. Di Ruscio, et al., “Lev4rec: A feature-based ap-
proach to engineering rsses,” Journal of Computer Languages, vol. 78, p. 101 256,
2024, ISSN: 2590-1184. DOI: https://doi.org/10.1016/j.cola.2023.101256.

[172] T. Thüm, C. Kästner, F. Benduhn, et al., “Featureide: An extensible frame-
work for feature-oriented software development,” Science of Computer Pro-
gramming, vol. 79, pp. 70–85, 2014.

[173] S Patro and K. K. Sahu, “Normalization: A preprocessing stage,” arXiv preprint
arXiv:1503.06462, 2015.

[174] M. Kearns, S. Neel, A. Roth, et al., “An Empirical Study of Rich Subgroup
Fairness for Machine Learning,” en, in Proceedings of the Conference on Fair-
ness, Accountability, and Transparency, Atlanta GA USA: ACM, 2019, pp. 100–
109, ISBN: 978-1-4503-6125-5. DOI: 10.1145/3287560.3287592. (visited on
12/01/2021).

[175] L. E. Celis, L. Huang, V. Keswani, et al., “Classification with fairness con-
straints: A meta-algorithm with provable guarantees,” in Proceedings of the
conference on fairness, accountability, and transparency, 2019, pp. 319–328.

[176] I. Giagkiozis and P. J. Fleming, “Pareto front estimation for decision making,”
Evolutionary Computation, vol. 22, no. 4, pp. 651–678, 2014, ISSN: 1063-6560.
DOI: 10.1162/EVCO_a_00128. eprint: https://direct.mit.edu/evco/
article-pdf/22/4/651/1530439/evco_a_00128.pdf.

[177] React library, 2025. [Online]. Available: https://react.dev/.

[178] Flask library, 2025. [Online]. Available: https://flask.palletsprojects.
com/.

[179] Celery library, 2025. [Online]. Available: https://docs.celeryq.dev/en/
stable.

[180] Rabbitmq website, 2025. [Online]. Available: https://www.rabbitmq.com/.

[181] Redis website, 2025. [Online]. Available: https://redis.io/.

[182] P.-E. Danielsson, “Euclidean distance mapping,” Computer Graphics and image
processing, vol. 14, no. 3, pp. 227–248, 1980.

https://www.informit.com/store/emf-eclipse-modeling-framework-9780321331885
https://www.informit.com/store/emf-eclipse-modeling-framework-9780321331885
https://doi.org/10.1007/s00607-018-0646-1
https://doi.org/10.1016/j.is.2010.01.001
https://doi.org/https://doi.org/10.1016/j.cola.2023.101256
https://doi.org/10.1145/3287560.3287592
https://doi.org/10.1162/EVCO_a_00128
https://direct.mit.edu/evco/article-pdf/22/4/651/1530439/evco_a_00128.pdf
https://direct.mit.edu/evco/article-pdf/22/4/651/1530439/evco_a_00128.pdf
https://react.dev/
https://flask.palletsprojects.com/
https://flask.palletsprojects.com/
https://docs.celeryq.dev/en/stable
https://docs.celeryq.dev/en/stable
https://www.rabbitmq.com/
https://redis.io/

Bibliography 211

[183] A. Singh, A. Yadav, and A. Rana, “K-means with three different distance met-
rics,” International Journal of Computer Applications, vol. 67, no. 10, 2013.

[184] G. J. McLachlan, “Mahalanobis distance,” Resonance, vol. 4, no. 6, pp. 20–26,
1999.

[185] E. Lepeschkin and B. Surawicz, “Characteristics of true-positive and false-
positive results of electrocardiographs master two-step exercise tests,” New
England Journal of Medicine, vol. 258, no. 11, pp. 511–520, 1958.

[186] PalletsProject, Jinja website, 2023. [Online]. Available: https://jinja.palletsprojects.
com/.

[187] Conda website. [Online]. Available: https://docs.conda.io/.

[188] J. Liu, E. Pacitti, P. Valduriez, et al., “A survey of data-intensive scientific
workflow management,” Journal of Grid Computing, vol. 13, no. 4, pp. 457–
493, 2015.

[189] M. R. Berthold, N. Cebron, F. Dill, et al., “Knime - the konstanz information
miner: Version 2.0 and beyond,” SIGKDD Explor. Newsl., vol. 11, no. 1, 26–31,
2009, ISSN: 1931-0145. DOI: 10.1145/1656274.1656280.

[190] Pickle documentation, 2023. [Online]. Available: https://docs.python.org/
3/library/pickle.html.

[191] P. Saleiro, B. Kuester, L. Hinkson, et al., “Aequitas: A bias and fairness audit
toolkit,” en, arXiv preprint arXiv:1811.05577, 2018. [Online]. Available: http:
//arxiv.org/abs/1811.05577 (visited on 11/11/2021).

[192] M. Robillard, R. Walker, and T. Zimmermann, “Recommendation systems for
software engineering,” IEEE software, vol. 27, no. 4, pp. 80–86, 2009.

[193] Wes McKinney, “Data Structures for Statistical Computing in Python,” in
Proceedings of the 9th Python in Science Conference, Stéfan van der Walt and
Jarrod Millman, Eds., 2010, pp. 56–61. DOI: 10.25080/Majora-92bf1922-00a.

[194] S. Verma and J. Rubin, “Fairness definitions explained,” en, in Proceedings
of the International Workshop on Software Fairness, IEEE, Gothenburg Sweden:
Acm, 2018, pp. 1–7, ISBN: 978-1-4503-5746-3. DOI: 10.1145/3194770.3194776.
(visited on 03/03/2022).

[195] S. Moro, P. Cortez, and P. Rita, “A data-driven approach to predict the success
of bank telemarketing,” Decision Support Systems, vol. 62, pp. 22–31, 2014.

[196] J. Di Rocco and C. Di Sipio, “Resyduo: Combining data models and cf-based
recommender systems to develop arduino projects,” in 2023 ACM/IEEE In-
ternational Conference on Model Driven Engineering Languages and Systems Com-
panion (MODELS-C), Ieee, 2023, pp. 539–548. arXiv: 2308.13808 [cs.SE].

[197] Y. Wang, W. Ma, M. Zhang, et al., “A Survey on the Fairness of Recommender
Systems,” ACM Transactions on Information Systems, vol. 41, no. 3, 52:1–52:43,
2023, ISSN: 1046-8188. DOI: 10.1145/3547333.

[198] Y. Deldjoo, V. W. Anelli, H. Zamani, et al., “Recommender systems fairness
evaluation via generalized cross entropy,” arXiv preprint arXiv:1908.06708,
2019.

[199] M. F. Bertoa and A. Vallecillo, “Quality attributes for software metamodels,”
2010. [Online]. Available: https://api.semanticscholar.org/CorpusID:
15268921.

https://jinja.palletsprojects.com/
https://jinja.palletsprojects.com/
https://docs.conda.io/
https://doi.org/10.1145/1656274.1656280
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
http://arxiv.org/abs/1811.05577
http://arxiv.org/abs/1811.05577
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.1145/3194770.3194776
https://arxiv.org/abs/2308.13808
https://doi.org/10.1145/3547333
https://api.semanticscholar.org/CorpusID:15268921
https://api.semanticscholar.org/CorpusID:15268921

Bibliography 212

[200] C. Croux and C. Dehon, “Influence functions of the spearman and kendall
correlation measures,” Statistical methods & applications, vol. 19, pp. 497–515,
2010.

[201] A. Altmann, L. Toloşi, O. Sander, et al., “Permutation importance: A corrected
feature importance measure,” Bioinformatics, vol. 26, no. 10, pp. 1340–1347,
2010.

[202] C. Yang, Y. Akimoto, D. W. Kim, et al., “OBOE: Collaborative Filtering for Au-
toML Model Selection,” in Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, ser. KDD ’19, New York,
NY, USA: Association for Computing Machinery, 2019, pp. 1173–1183, ISBN:
978-1-4503-6201-6. DOI: 10.1145/3292500.3330909.

[203] M. Cerrada, L. Trujillo, D. E. Hernández, et al., “Automl for feature selec-
tion and model tuning applied to fault severity diagnosis in spur gearboxes,”
Mathematical and Computational Applications, vol. 27, no. 1, p. 6, 2022.

[204] M. Feurer, A. Klein, K. Eggensperger, et al., “Efficient and Robust Automated
Machine Learning,” in Advances in Neural Information Processing Systems, C.
Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, Eds., vol. 28,
Curran Associates, Inc., 2015. [Online]. Available: https://proceedings.
neurips.cc/paper\%5Ffiles/paper/2015/file/11d0e6287202fced83f79975ec59a3a6-
Paper.pdf.

[205] G. D. Ruxton, “The unequal variance t-test is an underused alternative to stu-
dent’s t-test and the mann–whitney u test,” Behavioral Ecology, vol. 17, no. 4,
pp. 688–690, 2006.

[206] T. E. Duncan, “On the calculation of mutual information,” SIAM Journal on
Applied Mathematics, vol. 19, no. 1, pp. 215–220, 1970.

[207] B. Becker and R. Kohavi, Adult, UCI Machine Learning Repository, 1996. DOI:
10.24432/C5XW20.

[208] H. Guvenir, B. Acar, H. Muderrisoglu, et al., Arrhythmia, Published: UCI Ma-
chine Learning Repository, 1998.

[209] Campus recruitment. [Online]. Available: https://www.kaggle.com/datasets/
benroshan/factors-affecting-campus-placement?resource=download.

[210] V. N. Dornadula and S. Geetha, “Credit card fraud detection using machine
learning algorithms,” Procedia computer science, vol. 165, pp. 631–641, 2019.

[211] J. Clore, K. Cios, J. DeShazo, et al., Diabetes 130-US Hospitals for Years 1999-
2008, UCI Machine Learning Repository, 2014. DOI: 10.24432/C5230J.

[212] Heritage health dataset, 2012. [Online]. Available: https://www.kaggle.com/
c/hhp/data.

[213] A. Janosi, W. Steinbrunn, M. Pfisterer, et al., Heart Disease, UCI Machine Learn-
ing Repository, 1988. DOI: 10.24432/C52P4X.

[214] Ibm hr analytics employee attrition & performance. [Online]. Available: https://
www.kaggle.com/datasets/pavansubhasht/ibm-hr-analytics-attrition-
dataset.

[215] F. M. Palechor and A. d. l. H. Manotas, “Dataset for estimation of obesity lev-
els based on eating habits and physical condition in individuals from Colom-
bia, Peru and Mexico,” en, Data in Brief, vol. 25, p. 104 344, 2019, ISSN: 2352-
3409. DOI: 10.1016/j.dib.2019.104344.

https://doi.org/10.1145/3292500.3330909
https://proceedings.neurips.cc/paper\%5Ffiles/paper/2015/file/11d0e6287202fced83f79975ec59a3a6-Paper.pdf
https://proceedings.neurips.cc/paper\%5Ffiles/paper/2015/file/11d0e6287202fced83f79975ec59a3a6-Paper.pdf
https://proceedings.neurips.cc/paper\%5Ffiles/paper/2015/file/11d0e6287202fced83f79975ec59a3a6-Paper.pdf
https://doi.org/10.24432/C5XW20
https://www.kaggle.com/datasets/benroshan/factors-affecting-campus-placement?resource=download
https://www.kaggle.com/datasets/benroshan/factors-affecting-campus-placement?resource=download
https://doi.org/10.24432/C5230J
https://www.kaggle.com/c/hhp/data
https://www.kaggle.com/c/hhp/data
https://doi.org/10.24432/C52P4X
https://www.kaggle.com/datasets/pavansubhasht/ibm-hr-analytics-attrition-dataset
https://www.kaggle.com/datasets/pavansubhasht/ibm-hr-analytics-attrition-dataset
https://www.kaggle.com/datasets/pavansubhasht/ibm-hr-analytics-attrition-dataset
https://doi.org/10.1016/j.dib.2019.104344

Bibliography 213

[216] Ricci dataset. [Online]. Available: https://jse.amstat.org/jse\%5Fdata\
%5Farchive.htm.

[217] M. Chan, L. Klein, J. Fan, et al., “Scg-rhc: Wearable seismocardiogram signal
and right heart catheter database,”

[218] P. Cortez, Student Performance, UCI Machine Learning Repository, 2014. DOI:
10.24432/C5TG7T.

[219] M. Meek, T. Thiesson, and H. Heckerman, US Census Data (1990), UCI Ma-
chine Learning Repository. DOI: 10.24432/C5VP42.

[220] D. Slunge, “The Willingness to Pay for Vaccination against Tick-Borne En-
cephalitis and Implications for Public Health Policy: Evidence from Sweden,”
en, PLOS ONE, vol. 10, no. 12, U. Pal, Ed., e0143875, 2015, ISSN: 1932-6203.
DOI: 10.1371/journal.pone.0143875.

[221] A. Fabris, S. Messina, G. Silvello, et al., “Algorithmic fairness datasets: The
story so far,” en, Data Mining and Knowledge Discovery, vol. 36, no. 6, pp. 2074–
2152, 2022, ISSN: 1573-756X. DOI: 10.1007/s10618-022-00854-z.

[222] T. Le Quy, A. Roy, V. Iosifidis, et al., “A survey on datasets for fairness-aware
machine learning,” en, WIREs Data Mining and Knowledge Discovery, vol. 12,
no. 3, e1452, 2022, ISSN: 1942-4795. DOI: 10.1002/widm.1452. (visited on
02/26/2024).

[223] M. Hort, J. M. Zhang, F. Sarro, et al., “Search-based Automatic Repair for
Fairness and Accuracy in Decision-making Software,” en, Empirical Software
Engineering, vol. 29, no. 1, p. 36, 2024, ISSN: 1573-7616. DOI: 10.1007/s10664-
023-10419-3.

[224] A. Mastropaolo, M. Ciniselli, M. Di Penta, et al., Evaluating Code Summariza-
tion Techniques: A New Metric and an Empirical Characterization, en, 2023. DOI:
arXiv:2312.15475.

[225] F. E. Harrell, C. Dupont, et al., “Hmisc: Harrell miscellaneous,” R package ver-
sion, vol. 4, no. 0, 2020.

[226] S. Biswas and H. Rajan, “Do the machine learning models on a crowd sourced
platform exhibit bias? an empirical study on model fairness,” in Proceedings
of the 28th ACM joint meeting on European software engineering conference and
symposium on the foundations of software engineering, 2020, pp. 642–653.

[227] T. Chen, T. He, M. Benesty, et al., “Xgboost: Extreme gradient boosting,” R
package version 0.4-2, vol. 1, no. 4, pp. 1–4, 2015.

[228] M. Sokolova, N. Japkowicz, and S. Szpakowicz, “Beyond accuracy, f-score
and roc: A family of discriminant measures for performance evaluation,” in
Australasian joint conference on artificial intelligence, Springer, 2006, pp. 1015–
1021.

[229] M. Buckland and F. Gey, “The relationship between recall and precision,”
Journal of the American society for information science, vol. 45, no. 1, pp. 12–19,
1994, Publisher: Wiley Online Library.

[230] C. Goutte and E. Gaussier, “A probabilistic interpretation of precision, recall
and f-score, with implication for evaluation,” in European conference on infor-
mation retrieval, Springer, 2005, pp. 345–359.

[231] P. A. Flach, “Roc analysis,” in Encyclopedia of machine learning and data mining,
Springer, 2016, pp. 1–8.

https://jse.amstat.org/jse\%5Fdata\%5Farchive.htm
https://jse.amstat.org/jse\%5Fdata\%5Farchive.htm
https://doi.org/10.24432/C5TG7T
https://doi.org/10.24432/C5VP42
https://doi.org/10.1371/journal.pone.0143875
https://doi.org/10.1007/s10618-022-00854-z
https://doi.org/10.1002/widm.1452
https://doi.org/10.1007/s10664-023-10419-3
https://doi.org/10.1007/s10664-023-10419-3
https://doi.org/arXiv:2312.15475

Bibliography 214

[232] W. H. Kruskal and W. A. Wallis, “Use of ranks in one-criterion variance anal-
ysis,” Journal of the American statistical Association, vol. 47, no. 260, pp. 583–
621, 1952.

[233] H. B. Mann and D. R. Whitney, “On a test of whether one of two random
variables is stochastically larger than the other,” The annals of mathematical
statistics, pp. 50–60, 1947.

[234] R. B. Bendel, S. S. Higgins, J. E. Teberg, et al., “Comparison of skewness coef-
ficient, coefficient of variation, and Gini coefficient as inequality measures
within populations,” en, Oecologia, vol. 78, no. 3, pp. 394–400, 1989, ISSN:
1432-1939. DOI: 10.1007/BF00379115.

[235] X. Zeng and D. S. Yeung, “A Quantified Sensitivity Measure for Multilayer
Perceptron to Input Perturbation,” Neural Computation, vol. 15, no. 1, pp. 183–
212, 2003, ISSN: 0899-7667. DOI: 10.1162/089976603321043757.

[236] J.-B. Yang, K.-Q. Shen, C.-J. Ong, et al., “Feature selection for mlp neural net-
work: The use of random permutation of probabilistic outputs,” IEEE Trans-
actions on Neural Networks, vol. 20, no. 12, pp. 1911–1922, 2009.

[237] N. Japkowicz and S. Stephen, “The class imbalance problem: A systematic
study,” Intelligent data analysis, vol. 6, no. 5, pp. 429–449, 2002.

[238] I. Guyon and A. Elisseeff, “An introduction to variable and feature selection,”
Journal of machine learning research, vol. 3, no. Mar, pp. 1157–1182, 2003.

[239] R. Moussa and F. Sarro, “On the use of evaluation measures for defect pre-
diction studies,” in Proceedings of the 31st ACM SIGSOFT International Sym-
posium on Software Testing and Analysis, New York, NY, USA: Association for
Computing Machinery, 2022, ISBN: 9781450393799. DOI: 10.1145/3533767.
3534405.

[240] D. Kumar, O. Lesota, G. Zerveas, et al., Parameter-efficient modularised bias miti-
gation via adapterfusion, 2023. arXiv: 2302.06321 [cs.CL]. [Online]. Available:
https://arxiv.org/abs/2302.06321.

[241] C. Schuhmann, R. Beaumont, R. Vencu, et al., “Laion-5b: An open large-scale
dataset for training next generation image-text models,” Advances in Neural
Information Processing Systems, vol. 35, pp. 25 278–25 294, 2022.

[242] J. Li, D. Li, C. Xiong, et al., Blip: Bootstrapping language-image pre-training for
unified vision-language understanding and generation, 2022. DOI: 10 . 48550 /
ARXIV.2201.12086.

[243] J. Kotrlik and C. Higgins, “Organizational research: Determining appropriate
sample size in survey research appropriate sample size in survey research,”
Information technology, learning, and performance journal, vol. 19, no. 1, p. 43,
2001.

[244] A. A. Taha and A. Hanbury, “Metrics for evaluating 3D medical image seg-
mentation: Analysis, selection, and tool,” BMC Medical Imaging, vol. 15, no. 1,
p. 29, 2015, ISSN: 1471-2342. DOI: 10.1186/s12880-015-0068-x.

[245] O. Keyes, “The misgendering machines: Trans/hci implications of automatic
gender recognition,” Procs. of the ACM on human-computer interaction, vol. 2,
no. CSCW, pp. 1–22, 2018.

[246] H. Weerts, An Introduction to Responsible Machine Learning. 2024. [Online].
Available: https://hildeweerts.github.io/responsiblemachinelearning/.

https://doi.org/10.1007/BF00379115
https://doi.org/10.1162/089976603321043757
https://doi.org/10.1145/3533767.3534405
https://doi.org/10.1145/3533767.3534405
https://arxiv.org/abs/2302.06321
https://arxiv.org/abs/2302.06321
https://doi.org/10.48550/ARXIV.2201.12086
https://doi.org/10.48550/ARXIV.2201.12086
https://doi.org/10.1186/s12880-015-0068-x
https://hildeweerts.github.io/responsiblemachinelearning/

Bibliography 215

[247] M. Mitchell, S. Wu, A. Zaldivar, et al., “Model cards for model reporting,”
in Proceedings of the Conference on Fairness, Accountability, and Transparency,
ser. FAT*’19, Atlanta, GA, USA: Association for Computing Machinery, 2019,
220–229, ISBN: 9781450361255. DOI: 10.1145/3287560.3287596.

[248] H. Borges, A. Hora, and M. T. Valente, “Understanding the Factors That Im-
pact the Popularity of GitHub Repositories,” en, in 2016 IEEE International
Conference on Software Maintenance and Evolution (ICSME), Raleigh, NC, USA:
IEEE, 2016, pp. 334–344, ISBN: 978-1-5090-3806-0. DOI: 10.1109/ICSME.2016.
31.

[249] Elsevier, Scopus, 2023. [Online]. Available: https://www.scopus.com.

[250] Y. Gao, X. Gu, H. Zhang, H. Lin, and M. Yang, “Runtime performance predic-
tion for deep learning models with graph neural network,” in 2023 IEEE/ACM
45th International Conference on Software Engineering: Software Engineering in
Practice (ICSE-SEIP), IEEE, 2023, pp. 368–380.

[251] G. Yang, C. Shin, J. Lee, Y. Yoo, and C. Yoo, “Prediction of the resource con-
sumption of distributed deep learning systems,” Proceedings of the ACM on
Measurement and Analysis of Computing Systems, vol. 6, no. 2, pp. 1–25, 2022.

[252] H. Li, R. Wu, L. Qian, and H. An, “A systematic methodology for perfor-
mance characterizing of heterogeneous systems with a dataflow runtime sim-
ulator,” in Proceedings of the 2022 4th International Conference on Robotics, Intel-
ligent Control and Artificial Intelligence, 2022, pp. 629–637.

[253] W. J. Robinson M., F. Esposito, and M. A. Zuluaga, “Dts: A simulator to es-
timate the training time of distributed deep neural networks,” in 2022 30th
International Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS), 2022, pp. 17–24. DOI: 10.1109/MASCOTS56607.
2022.00011.

[254] Z. Lin, L. Feng, E. K. Ardestani, et al., “Building a performance model for deep
learning recommendation model training on gpus,” in 2022 IEEE 29th Inter-
national Conference on High Performance Computing, Data, and Analytics (HiPC),
IEEE, 2022, pp. 48–58.

[255] M. Lattuada, E. Gianniti, D. Ardagna, and L. Zhang, “Performance prediction
of deep learning applications training in gpu as a service systems,” Cluster
Computing, vol. 25, no. 2, pp. 1279–1302, 2022.

[256] A. Pourali, A. Boukani, and H. Khazaei, Prenet: Leveraging computational fea-
tures to predict deep neural network training time, 2024. arXiv: 2412.15519 [cs.LG].
[Online]. Available: https://arxiv.org/abs/2412.15519.

[257] K. Wang, Z. Zhou, and Z. Li, “Latte: Layer algorithm-aware training time es-
timation for heterogeneous federated learning,” in Proceedings of the 30th An-
nual International Conference on Mobile Computing and Networking, ser. ACM
MobiCom ’24, Washington D.C., DC, USA: Association for Computing Ma-
chinery, 2024, 1470–1484, ISBN: 9798400704895. DOI: 10.1145/3636534.3690705.
[Online]. Available: https://doi.org/10.1145/3636534.3690705.

[258] L. Zancato, A. Achille, A. Ravichandran, R. Bhotika, and S. Soatto, “Predict-
ing training time without training,” in Advances in Neural Information Process-
ing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin,
Eds., vol. 33, Curran Associates, Inc., 2020, pp. 6136–6146. [Online]. Avail-
able: https://proceedings.neurips.cc/paper_files/paper/2020/file/
440e7c3eb9bbcd4c33c3535354a51605-Paper.pdf.

https://doi.org/10.1145/3287560.3287596
https://doi.org/10.1109/ICSME.2016.31
https://doi.org/10.1109/ICSME.2016.31
https://www.scopus.com
https://doi.org/10.1109/MASCOTS56607.2022.00011
https://doi.org/10.1109/MASCOTS56607.2022.00011
https://arxiv.org/abs/2412.15519
https://arxiv.org/abs/2412.15519
https://doi.org/10.1145/3636534.3690705
https://doi.org/10.1145/3636534.3690705
https://proceedings.neurips.cc/paper_files/paper/2020/file/440e7c3eb9bbcd4c33c3535354a51605-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/440e7c3eb9bbcd4c33c3535354a51605-Paper.pdf

Bibliography 216

[259] I. Paun, Y. Moshfeghi, and N. Ntarmos, “Are we there yet? estimating train-
ing time for recommendation systems,” in Proceedings of the 1st Workshop on
Machine Learning and Systems, ser. EuroMLSys ’21, Online, United Kingdom:
Association for Computing Machinery, 2021, 39–47, ISBN: 9781450382984. DOI:
10.1145/3437984.3458832. [Online]. Available: https://doi.org/10.1145/
3437984.3458832.

[260] M. Sivakumar, S. Parthasarathy, and T. Padmapriya, “A simplified approach
for efficiency analysis of machine learning algorithms,” PeerJ Computer Sci-
ence, vol. 10, e2418, 2024.

[261] O. Kwon and J. M. Sim, “Effects of data set features on the performances
of classification algorithms,” Expert Systems with Applications, vol. 40, no. 5,
pp. 1847–1857, 2013.

[262] S. Ali and K. A. Smith, “On learning algorithm selection for classification,”
Applied Soft Computing, vol. 6, no. 2, pp. 119–138, 2006.

[263] F. Mohr, M. Wever, A. Tornede, et al., “Predicting machine learning pipeline
runtimes in the context of automated machine learning,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 43, no. 9, pp. 3055–3066, 2021.

[264] X. Hou, Y. Zhao, Y. Liu, et al., Large Language Models for Software Engineering: A
Systematic Literature Review, 2023. DOI: 10.48550/arXiv.2308.10620. arXiv:
2308.10620 [cs.SE].

[265] J. Shi, Z. Yang, H. J. Kang, et al., “Greening large language models of code,” in
Proceedings of the 46th International Conference on Software Engineering: Software
Engineering in Society, ser. ICSE-SEIS’24, Lisbon, Portugal: Association for
Computing Machinery, 2024, 142–153, ISBN: 9798400704994. DOI: 10.1145/
3639475.3640097.

[266] J. Shi, Z. Yang, B. Xu, et al., “Compressing pre-trained models of code into
3 mb,” in Proceedings of the 37th IEEE/ACM International Conference on Auto-
mated Software Engineering, ser. ASE ’22, Rochester, MI, USA: Association for
Computing Machinery, 2023, ISBN: 9781450394758. DOI: 10.1145/3551349.
3556964.

[267] V. Sanh, L. Debut, J. Chaumond, et al., Distilbert, a distilled version of bert:
Smaller, faster, cheaper and lighter, 2020. arXiv: 1910.01108 [cs.CL]. [Online].
Available: https://arxiv.org/abs/1910.01108.

[268] Y. LeCun, J. Denker, and S. Solla, “Optimal brain damage,” in Advances in
Neural Information Processing Systems, D. Touretzky, Ed., vol. 2, Morgan-Kaufmann,
1989. [Online]. Available: https://proceedings.neurips.cc/paper\%5Ffiles/
paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf.

[269] H. Li, A. Kadav, I. Durdanovic, et al., “Pruning filters for efficient convnets,”
in International Conference on Learning Representations, 2017. [Online]. Avail-
able: https://openreview.net/forum?id=rJqFGTslg.

[270] Y. Guo, A. Yao, and Y. Chen, Dynamic network surgery for efficient dnns, 2016.
arXiv: 1608.04493 [cs.NE]. [Online]. Available: https://arxiv.org/abs/
1608.04493.

[271] P. Molchanov, S. Tyree, T. Karras, et al., Pruning convolutional neural networks
for resource efficient inference, 2017. arXiv: 1611.06440 [cs.LG]. [Online]. Avail-
able: https://arxiv.org/abs/1611.06440.

https://doi.org/10.1145/3437984.3458832
https://doi.org/10.1145/3437984.3458832
https://doi.org/10.1145/3437984.3458832
https://doi.org/10.48550/arXiv.2308.10620
https://arxiv.org/abs/2308.10620
https://doi.org/10.1145/3639475.3640097
https://doi.org/10.1145/3639475.3640097
https://doi.org/10.1145/3551349.3556964
https://doi.org/10.1145/3551349.3556964
https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/1910.01108
https://proceedings.neurips.cc/paper\%5Ffiles/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://proceedings.neurips.cc/paper\%5Ffiles/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://openreview.net/forum?id=rJqFGTslg
https://arxiv.org/abs/1608.04493
https://arxiv.org/abs/1608.04493
https://arxiv.org/abs/1608.04493
https://arxiv.org/abs/1611.06440
https://arxiv.org/abs/1611.06440

Bibliography 217

[272] T. Gale, E. Elsen, and S. Hooker, The state of sparsity in deep neural networks,
2019. arXiv: 1902.09574 [cs.LG]. [Online]. Available: https://arxiv.org/
abs/1902.09574.

[273] D. Guo, S. Ren, S. Lu, et al., Graphcodebert: Pre-training code representations with
data flow, 2021. arXiv: 2009.08366 [cs.SE]. [Online]. Available: https://
arxiv.org/abs/2009.08366.

[274] X. Wei, S. K. Gonugondla, S. Wang, et al., “Towards greener yet powerful
code generation via quantization: An empirical study,” in Proceedings of the
31st ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ser. ESEC/FSE 2023, San Francisco, CA,
USA: Association for Computing Machinery, 2023, 224–236, ISBN: 9798400703270.
DOI: 10.1145/3611643.3616302.

[275] Z. Sun, X. Du, F. Song, et al., “When neural code completion models size
up the situation: Attaining cheaper and faster completion through dynamic
model inference,” in Proceedings of the IEEE/ACM 46th International Confer-
ence on Software Engineering, ser. ICSE ’24, Lisbon, Portugal: Association for
Computing Machinery, 2024, ISBN: 9798400702174. DOI: 10.1145/3597503.
3639120.

[276] F. Magliani, L. Sani, S. Cagnoni, et al., “Genetic algorithms for the optimiza-
tion of diffusion parameters in content-based image retrieval,” in ICDSC 2019.

[277] H. Berger, A. Dakhama, Z. Ding, et al., “StableYolo: Optimizing image gen-
eration for large language models,” in SSBSE 2023, ser. LNCS, vol. 14415,
pp. 133–139.

[278] Y. Cao, S. Li, Y. Liu, et al., A comprehensive survey of AI-generated content (AIGC):
a history of generative AI from GAN to ChatGPT, arXiv 2303.04226, 2023.

[279] S. Kim, C. Hooper, T. Wattanawong, et al., Full stack optimization of transformer
inference: A survey, arXiv 2302.14017, 2023.

[280] S. Alla and S. K. Adari, “What is mlops?” Beginning MLOps with MLFlow:
Deploy Models in AWS SageMaker, Google Cloud, and Microsoft Azure, pp. 79–
124, 2021.

[281] T. Chai and R. R. Draxler, “Root mean square error (rmse) or mean absolute
error (mae)?–arguments against avoiding rmse in the literature,” Geoscientific
model development, vol. 7, no. 3, pp. 1247–1250, 2014.

[282] A. De Myttenaere, B. Golden, B. Le Grand, et al., “Mean absolute percentage
error for regression models,” Neurocomputing, vol. 192, pp. 38–48, 2016.

[283] P. Rumao, Detect Malacious Executable(AntiVirus), UCI Machine Learning Repos-
itory, 2016. DOI: 10.24432/C5531V.

[284] APS Failure at Scania Trucks, UCI Machine Learning Repository, 2017. DOI:
10.24432/C51S51.

[285] I. Guyon, S. Gunn, A. Ben-Hur, et al., Arcene, UCI Machine Learning Reposi-
tory, 2008. DOI: 10.24432/C58P55.

[286] I. Guyon, S. Gunn, A. Ben-Hur, et al., Dexter, UCI Machine Learning Reposi-
tory, 2008. DOI: 10.24432/C5P898.

[287] C. A. Ratanamahatana and D. Gunopulos, “Scaling up the naive Bayesian
classifier: Using decision trees for feature selection,” 2002, Publisher: Cite-
seer.

https://arxiv.org/abs/1902.09574
https://arxiv.org/abs/1902.09574
https://arxiv.org/abs/1902.09574
https://arxiv.org/abs/2009.08366
https://arxiv.org/abs/2009.08366
https://arxiv.org/abs/2009.08366
https://doi.org/10.1145/3611643.3616302
https://doi.org/10.1145/3597503.3639120
https://doi.org/10.1145/3597503.3639120
https://doi.org/10.24432/C5531V
https://doi.org/10.24432/C51S51
https://doi.org/10.24432/C58P55
https://doi.org/10.24432/C5P898

Bibliography 218

[288] A. Vaswani, N. Shazeer, N. Parmar, et al., “Attention is all you need,” in Ad-
vances in Neural Information Processing Systems, I. Guyon, U. V. Luxburg, S.
Bengio, et al., Eds., vol. 30, Curran Associates, Inc., 2017. [Online]. Available:
https://proceedings.neurips.cc/paper\%5Ffiles/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

[289] A. Radford, J. Wu, R. Child, et al., “Language models are unsupervised mul-
titask learners,” OpenAI blog, vol. 1, no. 8, p. 9, 2019.

[290] C. Raffel, N. Shazeer, A. Roberts, et al., Exploring the limits of transfer learning
with a unified text-to-text transformer, 2023. arXiv: 1910.10683 [cs.LG]. [On-
line]. Available: https://arxiv.org/abs/1910.10683.

[291] OpenAI, Openai codex, 2019. arXiv: 1810.04805 [cs.CL]. [Online]. Available:
https://arxiv.org/abs/1810.04805.

[292] Y. Wang, H. Le, A. Gotmare, et al., “CodeT5+: Open code large language mod-
els for code understanding and generation,” in Proceedings of the 2023 Confer-
ence on Empirical Methods in Natural Language Processing, H. Bouamor, J. Pino,
and K. Bali, Eds., Singapore: Association for Computational Linguistics, 2023,
pp. 1069–1088. DOI: 10.18653/v1/2023.emnlp-main.68.

[293] M. Chen, J. Tworek, H. Jun, et al., Evaluating large language models trained on
code, 2021. arXiv: 2107.03374 [cs.LG]. [Online]. Available: https://arxiv.
org/abs/2107.03374.

[294] J. Gu, P. Salza, and H. C. Gall, “Assemble Foundation Models for Automatic
Code Summarization,” English, in 2022 IEEE International Conference on Soft-
ware Analysis, Evolution and Reengineering (SANER), ISSN: 1534-5351, Los Alami-
tos, CA, USA: IEEE Computer Society, 2022, pp. 935–946, ISBN: 978-1-66543-
786-8. DOI: 10.1109/SANER53432.2022.00112.

[295] X. Zhou, D. Han, and D. Lo, “Assessing generalizability of codebert,” in 2021
IEEE International Conference on Software Maintenance and Evolution (ICSME),
2021, pp. 425–436. DOI: 10.1109/ICSME52107.2021.00044.

[296] Y. Ding, Y. Fu, O. Ibrahim, et al., Vulnerability detection with code language mod-
els: How far are we? 2024. arXiv: 2403 . 18624 [cs.SE]. [Online]. Available:
https://arxiv.org/abs/2403.18624.

[297] Q. Zhang and B. Wu, “Software defect prediction via transformer,” in 2020
IEEE 4th Information Technology, Networking, Electronic and Automation Control
Conference (ITNEC), IEEE, vol. 1, 2020, pp. 874–879.

[298] J. Chen, X. Hu, Z. Li, et al., “Code search is all you need? improving code sug-
gestions with code search,” in Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering, ser. ICSE ’24, Lisbon, Portugal: Associa-
tion for Computing Machinery, 2024, ISBN: 9798400702174. DOI: 10.1145/
3597503.3639085.

[299] W. Wang, Y. Zhang, Z. Zeng, et al., “Transˆ 3: A transformer-based framework
for unifying code summarization and code search,” arXiv preprint arXiv:2003.03238,
2020.

[300] D. Chicco and G. Jurman, “The advantages of the matthews correlation coef-
ficient (mcc) over f1 score and accuracy in binary classification evaluation,”
BMC genomics, vol. 21, pp. 1–13, 2020.

https://proceedings.neurips.cc/paper\%5Ffiles/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper\%5Ffiles/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://doi.org/10.18653/v1/2023.emnlp-main.68
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://doi.org/10.1109/SANER53432.2022.00112
https://doi.org/10.1109/ICSME52107.2021.00044
https://arxiv.org/abs/2403.18624
https://arxiv.org/abs/2403.18624
https://doi.org/10.1145/3597503.3639085
https://doi.org/10.1145/3597503.3639085

Bibliography 219

[301] K. Papineni, S. Roukos, T. Ward, et al., “Bleu: A Method for Automatic Eval-
uation of Machine Translation,” in Proceedings of the 40th Annual Meeting of
the Association for Computational Linguistics, P. Isabelle, E. Charniak, and D.
Lin, Eds., Philadelphia, Pennsylvania, USA: Association for Computational
Linguistics, 2002, pp. 311–318. DOI: 10.3115/1073083.1073135.

[302] T. Zhang, V. Kishore, F. Wu, et al., “Bertscore: Evaluating text generation with
bert,” arXiv preprint arXiv:1904.09675, 2019.

[303] O. Chapelle, D. Metlzer, Y. Zhang, et al., “Expected reciprocal rank for graded
relevance,” in Proceedings of the 18th ACM Conference on Information and Knowl-
edge Management, ser. CIKM ’09, Hong Kong, China: Association for Comput-
ing Machinery, 2009, 621–630, ISBN: 9781605585123. DOI: 10.1145/1645953.
1646033.

[304] Y. Zhou, S. Liu, J. Siow, et al., “Devign: Effective vulnerability identification
by learning comprehensive program semantics via graph neural networks,”
in Advances in Neural Information Processing Systems, 2019, pp. 10 197–10 207.

[305] H. Husain, H.-H. Wu, T. Gazit, et al., “Codesearchnet challenge: Evaluating
the state of semantic code search,” arXiv preprint arXiv:1909.09436, 2019.

[306] S. Lu, D. Guo, S. Ren, et al., “Codexglue: A machine learning benchmark
dataset for code understanding and generation,” CoRR, vol. abs/2102.04664,
2021.

[307] A. Kumar, A. M. Shaikh, Y. Li, et al., “Pruning filters with l1-norm and capped
l1-norm for cnn compression,” Applied Intelligence, vol. 51, pp. 1152–1160,
2021.

[308] L. Traini, V. Cortellessa, D. Di Pompeo, et al., “Towards effective assessment
of steady state performance in java software: Are we there yet?” Empirical
Software Engineering, vol. 28, no. 1, p. 13, 2022. DOI: 10.1007/s10664-022-
10247-x.

[309] M. Jangali, Y. Tang, N. Alexandersson, et al., “Automated generation and
evaluation of jmh microbenchmark suites from unit tests,” IEEE Transactions
on Software Engineering, vol. 49, no. 4, pp. 1704–1725, 2023. DOI: 10.1109/TSE.
2022.3188005.

[310] Z. Zhang, Z. Xing, X. Xia, et al., “Faster or slower? performance mystery of
python idioms unveiled with empirical evidence,” in Proceedings of the 45th
International Conference on Software Engineering, ser. ICSE ’23, Melbourne, Vic-
toria, Australia: IEEE Press, 2023, 1495–1507, ISBN: 9781665457019. DOI: 10.
1109/ICSE48619.2023.00130.

[311] C. Laaber, S. Würsten, H. C. Gall, et al., “Dynamically reconfiguring software
microbenchmarks: Reducing execution time without sacrificing result qual-
ity,” in Proceedings of the 28th ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering,
ser. ESEC/FSE 2020, Virtual Event, USA: Association for Computing Machin-
ery, 2020, 989–1001, ISBN: 9781450370431. DOI: 10.1145/3368089.3409683.

[312] T. Kalibera and R. Jones, “Rigorous benchmarking in reasonable time,” in Pro-
ceedings of the 2013 International Symposium on Memory Management, ser. ISMM
’13, Seattle, Washington, USA: Association for Computing Machinery, 2013,
63–74, ISBN: 9781450321006. DOI: 10.1145/2464157.2464160.

https://doi.org/10.3115/1073083.1073135
https://doi.org/10.1145/1645953.1646033
https://doi.org/10.1145/1645953.1646033
https://doi.org/10.1007/s10664-022-10247-x
https://doi.org/10.1007/s10664-022-10247-x
https://doi.org/10.1109/TSE.2022.3188005
https://doi.org/10.1109/TSE.2022.3188005
https://doi.org/10.1109/ICSE48619.2023.00130
https://doi.org/10.1109/ICSE48619.2023.00130
https://doi.org/10.1145/3368089.3409683
https://doi.org/10.1145/2464157.2464160

Bibliography 220

[313] T. Kalibera and R. Jones, “Quantifying performance changes with effect size
confidence intervals,” University of Kent, Technical Report 4–12, 2012, p. 55.
[Online]. Available: http://www.cs.kent.ac.uk/pubs/2012/3233.

[314] R. F. Woolson, “Wilcoxon signed-rank test,” Encyclopedia of Biostatistics, vol. 8,
2005.

[315] L. Traini, D. Di Pompeo, M. Tucci, et al., “How software refactoring impacts
execution time,” ACM Trans. Softw. Eng. Methodol., vol. 31, no. 2, 2021, ISSN:
1049-331X. DOI: 10.1145/3485136.

[316] T. Zimmermann, N. Nagappan, and L. Williams, “Searching for a needle in
a haystack: Predicting security vulnerabilities for windows vista,” in Proceed-
ings of the 3rd International Conference on Software Testing, Verification and Vali-
dation (ICST), Most Influential Paper Award at ICST 2020 MIP Practical, IEEE,
2010.

[317] M. Jimenez, R. Rwemalika, M. Papadakis, et al., “The importance of account-
ing for real-world labelling when predicting software vulnerabilities,” in Pro-
ceedings of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, ser. ES-
EC/FSE 2019, Tallinn, Estonia: Association for Computing Machinery, 2019,
695–705, ISBN: 9781450355728. DOI: 10.1145/3338906.3338941.

[318] W. Sun, Y. Miao, Y. Li, et al., Source Code Summarization in the Era of Large
Language Models, en, 2024. [Online]. Available: http : / / arxiv . org / abs /
2407.07959 (visited on 10/05/2024).

[319] Y. Xie, J. Lin, H. Dong, et al., “Survey of code search based on deep learning,”
ACM Trans. Softw. Eng. Methodol., vol. 33, no. 2, 2023, ISSN: 1049-331X. DOI:
10.1145/3628161.

[320] M. Nagel, R. A. Amjad, M. van Baalen, et al., Up or down? adaptive rounding for
post-training quantization, 2020. arXiv: 2004.10568 [cs.LG]. [Online]. Avail-
able: https://arxiv.org/abs/2004.10568.

[321] P. Ganesh, Y. Chen, X. Lou, et al., “Compressing large-scale transformer-based
models: A case study on bert,” Transactions of the Association for Computational
Linguistics, vol. 9, pp. 1061–1080, 2021.

[322] Z. Liu, M. Sun, T. Zhou, et al., Rethinking the value of network pruning, 2019.
arXiv: 1810.05270 [cs.LG]. [Online]. Available: https://arxiv.org/abs/
1810.05270.

[323] A. Maricq, D. Duplyakin, I. Jimenez, et al., “Taming performance variability,”
in 13th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 18), Carlsbad, CA: USENIX Association, 2018, pp. 409–425, ISBN: 978-
1-939133-08-3. [Online]. Available: https://www.usenix.org/conference/
osdi18/presentation/maricq.

[324] S. E. Reed, Z. Akata, X. Yan, et al., “Generative adversarial text to image syn-
thesis,” in ICML 2016, pp. 1060–1069.

[325] F. Sarro, “Search-based software engineering in the era of modern software
systems,” in IEEE International Requirements Engineering Conference, 2023, pp. 3–
5.

[326] J. Redmon, S. K. Divvala, R. B. Girshick, et al., “You only look once: Unified,
real-time object detection,” in CVPR 2016, pp. 779–788.

http://www.cs.kent.ac.uk/pubs/2012/3233
https://doi.org/10.1145/3485136
https://doi.org/10.1145/3338906.3338941
http://arxiv.org/abs/2407.07959
http://arxiv.org/abs/2407.07959
https://doi.org/10.1145/3628161
https://arxiv.org/abs/2004.10568
https://arxiv.org/abs/2004.10568
https://arxiv.org/abs/1810.05270
https://arxiv.org/abs/1810.05270
https://arxiv.org/abs/1810.05270
https://www.usenix.org/conference/osdi18/presentation/maricq
https://www.usenix.org/conference/osdi18/presentation/maricq

Bibliography 221

[327] B. Ji, H. Huang, and S. S. Yu, “An enhanced NSGA-II for solving berth alloca-
tion and quay crane assignment problem with stochastic arrival times,” IEEE
Trans.,

[328] T. A. Rashid, J. Majidpour, R. Thinakaran, et al., “NSGA-II-DL: metaheuristic
optimal feature selection with deep learning framework for HER2 classifica-
tion in breast cancer,” IEEE Access,

[329] A. P. Guerreiro, C. M. Fonseca, and L. Paquete, “The hypervolume indicator:
Computational problems and algorithms,” ACM Computing Surveys, vol. 54,
no. 6, pp. 1–42, 2021.

[330] Z. Ding, J. Chen, and W. Shang, “Towards the use of the readily available tests
from the release pipeline as performance tests: Are we there yet?,” ser. ICSE
’20, 1435–1446.

[331] M. Robeer, G. Lucassen, J. M. E. Van Der Werf, F. Dalpiaz, and S. Brinkkem-
per, “Automated extraction of conceptual models from user stories via nlp,”
in 2016 IEEE 24th international requirements engineering conference (RE), IEEE,
2016, pp. 196–205.

[332] R. Moussa, G. Guizzo, and F. Sarro, “MEG: Multi-objective Ensemble Gen-
eration for Software Defect Prediction,” en, in Proceedings of the 16th ACM /
IEEE International Symposium on Empirical Software Engineering and Measure-
ment, Helsinki Finland: ACM, Sep. 2022, pp. 159–170, ISBN: 978-1-4503-9427-
7. DOI: 10.1145/3544902.3546255. [Online]. Available: https://dl.acm.
org/doi/10.1145/3544902.3546255 (visited on 03/12/2024).

https://doi.org/10.1145/3544902.3546255
https://dl.acm.org/doi/10.1145/3544902.3546255
https://dl.acm.org/doi/10.1145/3544902.3546255

	Abstract
	Acknowledgements
	Introduction
	Thesis Contributions
	Identified Challenges
	Contributions

	List of Publications
	Thesis Outline

	I Fairness of Learning-Based Systems
	Background Knowledge
	Fairness Assessment: Key Concepts and a General Workflow
	Bias Definition
	Fairness Analysis and Metrics
	Fairness Evaluation

	Bias Mitigation: Key Concepts and a General Workflow
	Background on Fairness-Enhancing Methods
	Workflow for Benchmarking Fairness-Enhancing Methods

	Conclusion

	Related Work on Fairness
	Review of Existing Approaches for Fairness Assessment
	Methodology
	Elicited features
	Selected approaches

	Review of Existing Approaches for Early Bias Detection
	Related Work on Bias in Text-to-Image Generation Models
	Related Studies on Model Repositories

	Improving Fairness in Binary and Multi-Class Classification
	Research Questions
	Debiaser for Multiple Variables (DEMV)
	Sensitive Groups Identification
	Balancing Strategies

	Evaluation
	Experimental setting
	Employed datasets
	Selection of the best generative strategy
	DEMV evaluation in classification tasks
	Comparison in the binary classification task
	Comparison in the multi-class classification task
	Comparison using more sophisticated classifiers

	Reproducibility of the experiments

	Discussion
	RQ1: Evaluation of existing approaches
	RQ2: Overcoming existing limitations
	RQ3: DEMV instance generation strategy
	RQ4: Comparison with baseline approaches

	Conclusion

	Modelling Fairness Concepts and Metrics
	Background on Software Modeling
	Model Driven Engineering
	Feature Oriented Software Development

	An Extended Feature Model to Support the Development of Fair and Effective Learning-Based Systems
	A Metamodel for Fairness Assessment
	Bias Definition
	Fairness Analysis
	Metric Definition

	Conclusion

	Low-Code Approaches for Software Fairness
	MANILA
	Web Application
	Feature Selection
	Experiment Generation and Execution

	Evaluation
	RQ1: Expressiveness Evaluation
	RQ2: Correctness Evaluation

	Threats to Validity
	Limitations

	MODNESS
	Domain Specific Language
	Bias Definition
	Fairness Analysis
	Metric Definition

	Code generation and fairness assessment
	Evaluation
	Examined use cases
	RQ1: State of the Art
	RQ2: Use Case Coverage
	RQ3: Baselines Comparison

	Threats to Validity

	Conclusion

	Towards Early Detection of Algorithmic Bias from Dataset Bias Symptoms
	Research Questions
	Methodology
	Selected fairness metrics and relative thresholds
	Symptoms identification
	Dataset Creation
	Bias symptoms dataset description

	Evaluation
	Experimental Settings
	RQ1: Correlation Analysis
	RQ2: Early Bias Detection
	RQ3: Feature Importance
	RQ4: Relation with Base Classifier

	Metrics
	Statistical Tests

	Results
	RQ1: Correlation Analysis
	Correlations between bias symptoms
	Correlation between symptoms and fairness metrics
	Correlation between fairness metrics

	RQ2: Early Bias Detection
	Statistical Parity
	Equal Opportunity
	Average Odds

	RQ3: Feature Importance
	Statistical Parity
	Equal Opportunity
	Average Odds

	RQ4: Relation with Base Classifier
	Multi Linear Perceptron
	Random Forest

	Discussion
	Threats to Validity
	Conclusion

	Preliminary Insights on Bias and Fairness of LLMs
	Assessing the Bias Exposed by Generative Models Towards Software Engineering Tasks
	Background on Stable Diffusion Models
	Empirical Study Design
	Data Collection
	Data Labeling
	Gender Labeling
	Ethnicity Labeling

	Bias Assessment
	Gender Bias
	Ethnicity Bias

	Empirical Study Results
	RQ1: Gender Bias
	RQ2: Ethnicity Bias
	RQ3: Task-related Bias
	Gender Bias
	Ethnicity Bias

	Discussion
	Recommendations for Practitioners
	Recommendations for Researchers
	Threats to Validity

	Investigating the coupled usage of classification pre-trained models and fairness assessment libraries
	Background on Hugging Face model repository
	Methodology
	Data collection and curation
	Github mapping
	Fairness filtering
	Usage analysis
	Preliminary results
	RQ1: Which classification PTMs are adopted in the GitHub ecosystem?
	RQ2: To what extent are classification PTMs coupled with fairness assessment libraries?

	Threats to validity

	Conclusion

	II Efficiency of Learning-Based Systems
	Background and Related Work on Efficiency on LBS
	Review of Existing Approaches to Estimate the Training Time of Traditional Machine Learning Models
	Methodology
	Selected Works

	LLMs Efficiency
	Compression Strategies for Large Language Models
	Review of Approaches to Improve Efficiency and Effectiveness of Text-To-Image Generation Models

	Towards Predicting the Training Time of ML Models
	FPTC Approach
	Experimental Setting
	Slope Computation
	Training Time Prediction

	Experimental Results and Discussion
	RQ1: Slope Computation
	RQ2: Prediction Effectiveness

	Threats to Validity
	Conclusion

	Analyzing and Improving the Efficiency of LLMs
	Analysing the Effectiveness of Compression Strategies for Language Models of Code
	Empirical Study Design
	Software Engineering Tasks
	Compression Strategies
	Efficiency Metrics
	Effectiveness Metrics.

	Empirical Study Results
	RQ1 Results - Vulnerability Detection
	RQ2 Results - Code Summarization
	RQ3 Results - Code Search

	Discussion
	Performance of LLM Compression Strategies
	Insights

	Threats to Validity

	Improving Inference Time and Image Quality of Image Generation Models
	Methodology
	NSGA-II Optimization Algorithm
	Selected Parameters

	Evaluation
	Experimental Setup
	RQ1 Results
	Results of RQ2 and RQ3

	Threats to Validity

	Conclusion

	III Conclusion
	Conclusion
	Future Work

	Additional DEMV Evaluations
	Detailed results of generative strategies' comparison
	Detailed results for binary classification
	Detailed results for multi-class classification
	ANOVA tables

	Bibliography

